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PREFACE

About twenty years ago | wrote a series of books on different subjects of
Engineering Mathematics under the name “FARKALEET SERIES”. FARKELEET

means MUHAMMAD (S.A.W.S). This name of our Prophet (5.A.W.S) is mentioned
inthe BIBLE.

The series became very much popular and liked by my students at Mehran. It gained
Popularity in students of other universities and colleges of Sindh as well. Many
teachers of different universities and colleges also appreciated such efforts of mine.
The reason is that each topic was clearly explained and that every student as well as
teacher enjoyed reading the contents without any difficulty.

Afterwards | along with my colleagues put efforts as well as our teaching experience
together and published different books on mathematics. Meanwhile, my students

were insisting to rewrite this series once again as they wanted to be at ease while
reading material on engineering mathematics.

| decided to write this series once again after my retirement. Now by the grace of
Almighty ALLAH the most gracious and most merciful | have retired from my
services and have started rewriting this series once again.

Now I myself along with my colleagues, Prof. Ashfaque Nabi Pathan, Chairman,
BSRS, MUET, Jamshoro, Mr. Asif Ali Shaikh and Ms Sania Qureshi of BSRS, MUET,
Jamshoro and Mr. Wajid Ali Shaikh of BSRS, QUEST, Nawabshah, Mr. Saeed
Ahmed Rajput, Lecturer, BSRS, QUCEST, Larkana put the efforts to bring out this
book on “"APPLIED CALCULUS", You will find the experience of our whole life in this
book. Each topic is explained in well manner and in detail as well.

We are indebted to our dearest friend and colleagues Prof. Khadim Hussain Bhutto .
Chairman of Department of Mathematics and BSRS, QUEST, Nawabshah and Dr.
Abdul ~ Waseem Shaikh, Assistant Professor of IMCS, University of Sindh,
Jamshoro, and Mr. Abdul Ghafoor Shaikh, Assistant Professor, BSRS, QUEST,
Nawabshah who have always remained cooperative and well wisher of ours. With
their inspiration it became possible for us to rewrite once again this series after
many years.

We are thankful to all our colleagues of BSRS, MUET who encouraged and gave
valuable suggestions which had made this book even more effective.

We shall be looking forward to hear from the readers any critic that will improve the
standard of the book.

Prof. (Rtd) Muhammad Urs SHAIKH Co-Authors
Cell: 0333- 756-5595 Pr?f_ A N. Pathan
Email: ursshaikh_muet@yahoo.com Asif Ali Shaikh

Sania Qureshi
Wajid Ali Shaikh
Saeed Ahmed Rajput
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CHAPTER

ONE FUNCTIONS AND THEIR

APPLICATIONS

!
L1 INTRIDUCTION TO REAL NUMBERS
The study of elementary calculus requirgs knowledge of the real number system. Real
numbers can be considered as points on a line. For every real number there corresponds
one point on this line and to every point there corresponds one real number (See below).
- | 5" | 1S I I |12 | w13l 163,,: | k
J - —3' - I—2 I-l I0 ; Il ; [2 |3 [4
Inequalities can be used o compare real numbers. The symbols used are > (greater than),
< (less than), > (greater than or equal t0), and < (less than or equal to). For example,
X>3,y<4,x25,y<-2 elc: are all inequalities.
In some applications, it is useful to combine two inequalities in order to €Xpress an
interval. A subset of the real line is called an interval if it contains at least two different
real numbers and other real numbers lying between them. For example, 2 < x < §
combines the inequalities 2 < x and x < § and represents all real numbers between 2 and
5. This is called open interval and we use the notation (2, 5). The open interval excludes
the end points. Generally, this is expressed as:
(a,b)z{xla<x<b}
The inequality 2<x <5 represents a closed interval, one in which the end points are
included. This interval is usually denoted by (2, 5], Generally, this is expressed as:
: Ia.b]=[xlusx£b‘}
The parentheses are used to indicate that an end point is not included. The squ
brackets are used to indicate that end-poin
[2, 5) are called half-open or half—closed intervals. The s
specify that the interval extends inﬁnitely far to the right,

o
w

at Y far to the left. Because o does not
represent a number, it is never included in the interval, and thus, a parenthesis is always
used with this symbol.

Absolute Value
The absolute value of a real number x, denoted by Ix| is defined by the formula
X, >
¥ M _ X ()_
-X, x<0

Forexample, 131=3,101=0, -5 = 5.
REMARK: (i) Ix| > 0 for every real number x. (ii) If Ix| = then x = (
There are two other ways to define modulus of a rea] number x. The

(i) |x|:\[x7 and (i) I X I=max(~

y are:
X,X). For €xample,

(i)[—4 =,{(-4)2 :\/Eztl and (ii) f~4l=max(—(—4),-4)

Geometrically, Ix| represents the distance from 0 X on th i
generally, Ix - yl = the distance between x and y. : © real line. More
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FARKALEET SERIES
Inequalities and Their Solutions .
In this section we shall discuss how to solve an inequality

we first convert the inequality into an equation. This equation is kn

equation”. Solutions of the associated equation are called “boundary numbers™ for this
inequality. If a’rational expression occurs in equality, then the numbers where the

denominator vanishes are not points in the domain of the rational expression. These
numbers are called “free numbers”. These numbers are not the part of the solution.

After finding the boundary numbers, locate them on the real line.-The real line wi_II _bc
divided into a number of distinct “regions” each of which belongs to the solution set 1n 11s
“entirety”. Finally, we check the inequality by taking a point selected from each region.
Union of all such regions constitutes a solution set of the inequality.

Example 01: Solve (i) 3x +5<x—9 (ii) ISx+6(>5 (iii) X’ = 5x +6 <0

(i) X =2x+2>0 (v) [(x*-2)/(1-2x)]>1

Solution: (i) 3x +5<x-9: Since 3x +5<x-9 P 3x-x<-9-5 =2 2x <-14

< x <-7.Thus solution setis:  {x1<-7}=(-»,-7).

(ii) I15x + 6 | = 5: By definition, if I5x + 6 1> 5

problem. To solve inequalities,
own as “associated

> 4 5x+6)>5 or —(5x+6)>5 [Sec the technique]
2> 5x>5-6 or 5x-62=5

-> : 5% > -1 or -5x >25+6

-> x> -1/5 or x<-11/5

Thus the solution sel is (-, -11/5]U[-1/5, w). This Solution set-is graphically shown
below. The thick line shows the solution set of the given inequality-

< — ET >
-0 -11/5 /50 £
(iii) x> = 5x + 6 < 0 : The associated equation is X" =5x+6=0=> x=2and x = 3. These
are the boundary numbers for the given inequality. The real line is divided into the
following regions with the help of boundary numbers as shown below.

PN .

0 EINE -
Region A: Testx =0 ; 0-0+6=6 <0 Result: False
Region B: Testx=25 : - (25)-35(25+6=-025<0 Result: True
Region C: Testx =4 : 4 -54)+6=2<6 Result: False

Thus only the region B form the solution set. Therefore the solution setis: S = (2, 3)

[t may be noted that if x is replaced by 2 and 3, the inequality will be not true. Hence the
open interval (2, 3) is the only solution which is shown here in the form of thick line
segment. ;

(iv) x> = 2x + 2 > 0: The associated equation is X -2X+2=0dx=1=i

These are complex numbers which can not be represented on the real line. Thus there are
no boundary numbers. We have therefore one region, that is, the entire real line as the

©given inequality is true for every real value of x.

(v) [(*=2/(1-2x)]>1: The associated equation is: (.\'2 - 2) /(1-2x)=1

>x-2=1-2x > x*+2x-3=0.This gives: x=-3, |

These are the boundary numbers for the given inequality. If the denominator of this
inequality is zero (1 -2x=0)then x = 1/2. This is the free boundary number for given
inequality hence it can not be in the solution set. '

The real line is divided by boundary numbers and free boundary numbers are shown in

the following figure.

2



http://www.itwebister.com

FARKALEET SERIES APPLIED CALC ULUS
A
- . B ; C l D ~
. R e S B e BRI R
-0 -3 0 121 ;
Region A: Testx=-4 (16-2)/(1+8) > 1 Result: True
Region B: Test x =-1 : (1-2)/(1+2) > 1 Result: False
Region C;, Testx=3/4 (9/16 -2)/(1-3/2)> 1 Result: True
Region D: Testx =2 . (4-2)/(1-4) > 1 Result; False

The solution set is therefore: S = (-0, -3) U(1/2, 1)

Graphically, the solution set is shown by thick line segments in the above figure.

1.2 INTRODUCTION TO FUNCTIONS

Recall the formula A = nir® which states that area A of the region within a circle is equal
to T times the square of the radius r. The equation A = 7ir” relates two variables A and r
such that for every non-negative value of r, there is a unique value of A. It indicates how
to compute A for any particular value of r. The correspondence can be viewed as:

nr

r N

0 -0

] » T approx: 3.14

2 > 4T approx: 12.57
We observe that when r changes then A also changes - X
Moreover, for one value of r there is exactly one 2x + 1
value of A. Such relation between r and A is 0 > |
defined as function. 3 > 7
An equation y = 2x + 1 also defines a function; 0.5 3 "
because for any real x; there is a unique value -2 *.3

of variable y. Some values of x and the corresponding

values of y are shown in the figure. We say that y is a function of x.
Definition: A function is a rule of correspondence by which each element of set X is
assigned to exactly one element of the other set Y.

In A =7 the set of all possible input values for the radius is called domain of function.
The set of all output values of area is called the range of function. Since circles cannot
have negative radii or areas, the domain and range of this function is an interval [0, )
consisting of all non—negative real numbers.

A Swiss mathematician, Leonard Euler (1707-1783) invented a symbolic way to say, -
*y is a function of x” by writing y = f(x).

In this notation, the symbol f represents the function. The letter x, called the independent
variable, represents an input value from the domain of f, and y the dependent variable,
represents the corresponding output value in the range of f. In the set notation, function is

written as: {(x,f(x)):xe X.f(x)e Y}-
Symbolically, it is indicated by f: X —Y and is read as “f is a function
set Y. :

REMARK: (i) In calculus we deal with functions from R to R.(ii) Functions defined
from R to'R are called real-valucd functions. (iii) Each element y of the set Y is called an
image and each element x of the set X is called co-image of the function f.

Example 02: Which of the following diagrams describe a function from the set
X={1,2,3,4}into Y{a, b, ¢, d}.

from the set X to
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(iv) k
X

an OB

|
2
3
4

Solution: (i) Relation f is not a function from X into Y as‘elemcnl 4 of set X is not

i tY.
assigned any of element of set _ ‘ PR .
(i) Relation g is not a function from X into Y as eleme set X'is assigned two

different elements ‘a’ and d" of set Y and thus image of 2 is not unique. |

(iii) Relation h is a function because every element of X has a unique image in Y.

(iv) Relation k is a function because every element of X has a unique image in Y.
Domain, Co-domain and Range of Real Valued Functions

Consider a real valued function y = f(x) from set X to set Y. The set X is called domain
and set Y is called co-domain of the function f. The set of those elements of Y which
form the images of the elements of the set X is called the range of a function f. Refer o
example 2 above we see that X = {1,2, 3,4} is a domain and Y = (a, b, c. d} is a co- l
domain of functions h and k whereas, range of function h is the set {a, ¢, d} and range of

function k is the set {c}.

Let I(x) = 2x + ] be a function from R to R. Here x can be any real number and, when

this number is used for x there will be a corresponding real number f(x) or y. The domain

and range of this function f therefore, include all real numbers. The co-domain of this
function is also a set of all real numbers.

. AP _
i e s 3 IR . flre o byl e
domain of this function is the ere will be a corresponding real number f(x) or . The
real number is always non-nem'Of ¢} teal numbers. But as we know thal the square 0f
non-negative real numbers | e elore e range of this function will be the set of
Now consider a functior f(x;“hlhe 2co-domain of this function is the set R. o

rectangle and (2x + 3) represc;[x(lhx -l+ 3) where x represents the length of one side ot' a
not be negative; therefore the d € length of another side of the rectangle. Here x can

2l Ive e ‘ 0 n-3 - - | _
negative real numbers. Main and fange of this function are the set of 1O
REMARK: (i) The doma;

r.espc’cfnfcly_ (i) In addition the

ca rsint e domai oy 1 1 Tl
1. Division by zepg clion. Thege
Any value of x that ¢y

would
be no fix) ¢ Y 7ero ¢y ere

0 .
Ponding tg gy, an x Mot be in the domain of a function. TN
N

A\

N and '
ange of a function f are usually denoted by D and R¢

of applications, there are other concems that
Concerns are:
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2. Square root of negative numbers
Any value of x creating the square root of a negative number can’t be in the domain of a
function. There would be no real f(x) corresponding to such real x.
Example 03: Find the domain of each of the following functions:
(a)f(x)=—l— (b) F(x) = — ©) f(x)=vx—-1  (d) f(x)=3-5x
x—-4 x?+x
Solution: (a) If we put x = 4, the denominator becomes zero. Since division by zero is
not defined, no f value is produced if 4 is used for x. Thus, 4 is not in the domain of f.
This means that the domain of f is the set of all real numbers except 4. Thus for this
function Dy = R- {4).
(b) Here the domain of f is the set of all real numbers except 0 and —1. We can write this
simply as x £0, -1. We may also say that D;=R — {0, -1}.
(¢) If x - 1 is negative, the result is the square root of a negative number. Since the square
root of a negative number is not a real number no f value will be produced in such case.
This means that the domain is all x values for which x — 1 > 0 or x > 1. Thus, the domain
of fis x > 1 or the interval [1, o)
(d) The domain of fis 3 — 5x 2 0. This means 3> 5x Or 3/5> X or x < 3/5. In the interval
notation, we may write this as Dy = (w0, 3/5].
Example 04: Determine the domain of each of the following function:
@fx)=V3+x+J7-x (b) I(x)=(x=4)/(x+1)
Solution: (a) Here f(x) is defined for: )
3+x20 and 7-x20 = x2-3 and x<T=-3<x<7 or r—3.7].

Hence the domain of fis Dy = [-3, 7).
(b) In the numerator of the function, x -4 £0 = x £ 4 and the denominator
x+1£ 0= x £1.Combining the two relations, the domain of f is:

(=e=.=1)U[4, ) 0r [-1,-4)
Example 05: Let the function f be defined by f(x) = 5x” — 4x + 8. Determine:
(a) £(0) (b) f(2) () (-3) (d) f(x+1).
Solution:
(a) At x =0, f(0)=5(0) —4(0)+8 =8

(b) At x=2, f(2)=5(2)>-4(2)+8=20
(c) At x =-3, f(=3)=5(-3)? —4(-3)+8 =65

(d) Atx=x+1, f(x+D)=5(x+1)*-4(x +1)+8=5x2 +6x +9

Zeros of a Function

A zero of a function f is any real number x for which f (x) = 0. Geometrically, it is a point
where the function crosses or touches the x-axis. This is shown in the figures below:

It may be noted that a function may have more than one zeros or a function may have no
zero as shown in figures 2 and 4 respectively.

[ g v V.

Example 06: Find the zeros of each of the following functions:

(a) f(x) = 5x - 20 (b) f(x) = x" + 5x - 14
Solution: (a) Given f(x) = 5x - 20. Now if f(x) = 0 = 5x - 20 = 0 = x = 4. Thus the
only zero of this function is 4.
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(b) Given [(x) = 4 5x - 14 Iffx) =0 > x*+5x-14 _ 0-This is a quadratic
equation. Solving, we get: X = 1 function has lwo 7er08 ~7and 2.
Types of Functions '
By now, hopefully the readers have become familiar with the concept of function. Wc
now present different types of functions which arc very important for our further work.
1. Surjective Function: A function { [tom sct X to sel Y is said to be Surjective [unction
if R, =Y. Surjective function is also known as onto function. For example, the [unction
f(x)= x' from R to R is onto, whereas the function f(x) = X
2. Injective Function: A [unction [ from set X to sl Y ois s
distinct elements of D, have distinct images, that is, it for all x,,x,€ Dy
x, =%, [(x)) f(x,)

7 or x = 2. Thus giver

15 not onto becausc Y £ R..
id to be an Injective il

1. For example, the function

An Injective function is also known as One-One functior
¢ of x have different images

1 . R
y=[(x})=x from R 10 R 15 one-one because different value

in f(x).

The lunction [(x) = X
values of x have the same image. For if x = | theny = 1.
wo ditferent values of X,y has the same value. Hence (his is nota -1 function.

3. Bijective Function: A function { from R 1o R is said 10 be it Bijective function il 1L1s
poth Injective and Surjective. A Bijective fanction is also Known as one—Lo—one
ample, the functiond(x) = L is Bijective function.

onc—onc becausc diflferent

3

2 from R to R on the other hand, is not
il x = -)then y = 1. Thus: for

correspondence. For cx
4. Even and Odd Functions ,

A function y = 1(x) 15 «aid 1o be an even funchion W 1(=x) = [(x) and 18 calle
i f(-x) = - (%) 10a function does not satisly these conditions, it s said 1o he neither even

nor odd function.
For example, the func

Jd odd function

tion I(x) = x~ 4 | is even lunction, lor
(-x) :(-.\)3 +l1=x+1=[x)
The function f(x) = x 4% 1s odd function-because
Hox) = (X)) +(x) =% =X =- (< + %) = - [(x).

) < , £ 3 , - : L
The function [(x)=x —X 18 neither even nor odd function. Readers may verily it

5. Inverse of a Function
Lety=f(x)bca function ol X. We deline inverse function ast x = (y).

For example if: y=(x+2/x-17) > yix -T)=(x+2)
=3 yx-x=2+7y 4 x(y-1=02+7y)
x=2+Tyly-1) o 4 x=|"(y}=ﬁ2+7y)/[y-l)

Example 07: If f(x) = (x + 2)/(x = 7) find (x) and hence { 1(3).

Solution: Let y = f(x) =(x + 2)/(x —T) then

f "(y) =2+ TyNy- [) as shown above. > (x)= 2+ TxX)(x - 1)

21'3)=02+ 203 -1)=23/2

REMARK: It may be noted that if y = f(x) be a function of x then its inverse x = T(y)
may or may not be a function. { “!(y) is a tunction only it f(x) is both 1-1 and onto, that is;
ify= f(x) is bijective function then it's inverse x'= f '(y) is a function and morcover lht::
resultant inverse function is also bijective function. ‘

Let us take an example:
/

(1) Consider y = x + 5. Since this function is bijective function hence, its Inverse
x=y-Sisaboa function. In fact x = y = S is bijective fafiction

. . L . 4 ) =_ 3 ) —

(i) Now consider the function y = X It's mverse 18X :in is not a function

because for one value of y there are exactly two valucs of x.
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16‘ Composite Function
:

A — 5B
and g:B—»C
an independent variable x. Then composite function of f and g 1s denoted
circle g”) and is a function from A to C, that is;

A — _ , ¢
Composite tunction is defined as: (Fog)(x)= f(g(x)) =h(x)
The domain of f "8 consists of the numbers x in (he domain ol
the dun‘min Of f. In facy composition is
Formation of composite function is sh
In the adjacent figure.
It shows that twe functions can be

composed when the range of the first lies A
In the domain of

are functiony of
by h= fg (“f

g for which g(x) lics in
another method for combining functions,
own

C
he second (hg).

To find (fog) (x) we first find £(x) and then find flg(x)).

To evaluate the composite function g f (when defined),

We reverse the order. finding f(x) first and then g[f(x)). The domain of g1 is the set of
numbers x in the domain of t'such that f(x) lies in the domain of g.

REMARK: The functions fog and gof are usu

ally not equal, i.e. fog # gof .
Example 08: If f(x)=/x* -3 ung g(x)=x"+3 find
(1) fog (ii) gof  (iii) fof (1v) gog

Solution: (i) (f ug)(x)zf(g(x)):f(xz+3)=,f(x3+3)3—_ =Vx®+9x* +27x2 424
(i) (gwf)(x)=g(i'(x)):r( x‘—3):(\/x3—3)2+3=x‘—3+3:x“»

(iii) (f-.-f)(x)zf{f(x)):f(ﬁ):{\/(-h)‘:]-

(V) (gog)(x)=g(2(x))= g(x' +3) = (x“ +3)
Observe that fog # gof.

Algebra of Functions .

Let fand g be given functions. The sum f+g,
and the quotient f/g are functions defined by:

(i) (F+g)(x)=f(x)+g(x), Vx€D; AD,
(ii) (f-g)(x)=F(x)-g(x). VxeD, ND,

+3=x"+6x +12.

the difference f—g, the product fxg

I

»

(i) ()(x)=F()s(x).  ¥xeD,,
i . X _fx) xeD, nD,_, (x 0-
i) ()=, VxeD, D, g(x)s

The reciprocal of the function f is denoted by 1/f and defined as

—_—
<
p——
N
- | -—
. SR
—
>
S
Il
- |
‘—st_.
b3
S—

V xe D, where f(x)#0-

"

(vi) (cl)(x)=cl(x), VxeD;,ceR:
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Example 09: If f(x) = 2x — 1 and g(x) = x* + 1 where x € R, find

iH(F+g (ii) (F-g) (iii) fg (i‘_r.)- /f

() f/g (vi) -3f (vii) f(x + 2) (viii) g(x - 3)
Solution:

@ (F+g)(x)=Ff(x)+g(x)=2x-1+x*+1=x*+2x =x(x+2) VxeR

(i) (f--—g)()()=f(x)—g(x)=(2x—-l)—(x2 -i-l)=wx2 +2x-2 VxeR
(i) (fg)(x)=f(x)xg(x)= (Z:m:—l)(x2 +l)=2x3 -x’+2x-1 VY xeR

| 1 1
iv) [ —[(x)= = VxeRx#1/2
(iv) (r](x) f(x) 2% xeR,x #

—

(v) [—gf—)(x)zgg;;%}:, V¥ xeR

(vi) (-3)(x) =- 3f(x) = -3(2x -1) = -6x + 3,V xe R
(vii) f(x+2)=2(x+2)-1=2x+3 V¥V xe R
(viii) g(x-3)=(x-3)+1=x"-6x+9+1=x? —6x +10V xeR
Graphs of Functions
A drawing that shows the relationship between two variables is called a graph. This idea
was developed by a French mathematician Rene Descarfes. A graph describes a function
in visual form. i
There are various types of graphs. For example, histograms and the pie chart are used to
display numerical information in the form of graph which is simple and quickly
understandable. Scatter diagrams may be used in analyzing the results of a scientific
experiment.
In calculus, graphs are used to give a geometric representation of a function. Moreover,
simultanecous equations can be solved by drawing the graphs of the equations and finding
the points of intersection. Graphs are particularly helpful in the study of Analytical
Geometry and Calculus. Graphs of some well-known functions are now presented below.
1. Linear Function :
A function described by the equation: Yy = mx + ¢ is called a linear function. In other
words, a linear function of x is one, which contains no term in x of degree higher than the
first. The general form of a linear function is

ax+by+c=0
where x and y are variables, and a, b and ¢ are constants. This function is called linear
because its graph in the Cartesiqn coordinates is always a straight line,
A straight line is completely determined by two points; therefore to draw the graph of a
straight line we locate at least two points in the plane. By joining the two points we
obtain the required graph of the line. Let us take an example now. A
Example 10: Draw the graph of the linear functions: y = x - Ly=x,y=x+1on the
same graph paper.
Solution: See the table below where tabular values of

Y:x-—l.y:xandy=x+larc

given.
[ x O )
=x-1 -1 0
rL_ﬁ_Q__ |
y=x+1 [ >
8
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A
y=X +1
’ =X

= i =x-1

/’ "Y— ) L
P4 "‘
/I 7
i /1 0 A v

REMARK: Look at the three graphs. Graph of y = x — | is shifted one unit to the right
and graph of y = x + | is shifted one unit left. The shape of each graph is same.

Generally, for a given function y = f(x), the shape of graphs of f(x - a) and f(x + a) will
be same as that of f(x) but graph of f(x - a) is shifted *a° units to the right and that of
f(x + a) "a’ units to the left of x-axis.

On the contrary, the graphs of f(x) — a and f(x) + a will have the same shape as that of
f(x) but they will be shifted “a* units down and up on the y-axis respectively, where a > 0.
2. Quadratic Function

A function defined by the equation y = ax® + bx + ¢, a # 0 where a. b, ¢ are constants, is

called a quadratic function. This equation always represents a parabola. The graph of
parabola will have one of the shapes as shown below:

\/ Q)

whena<( whena<0

Similarly the equation x = ay2 + by + ¢, where a £ 0 represents the parabola having one of
the following shapes:

whena >0 when a < (0
Thus, if one of the variables in the equation a
square form, then the graph is a parabola.
Example 11: Draw the graphs of y = x> - 1, y
paper.

ppears with single power and the other in its

=x" and ¥ =x* + 1 on the same graph

Solution: See the table below where tabular values of RS y = x> and
y= x* + 1 are given.
X -1 0 1
y= x7 -1 0 -1 0
y=x ! 0 l
= X2 + 1 2 1 2
A A Xt +1
L
\ ;e
: S y=x'-1
\ ’
x 7 —>
|
~|
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Observe that graphs of y = x’-landy= 2 + 1 are similar to the graph of y = x* but are
shifted one unit down and one unit up respectively on the y-axis. -
Example 12: Draw the graphs of y = (X - 1,y=x"andy=(x+1) on the same

graph paper. ;
Solution: See the lablea below where tabular values of y = X

2 .
y=x"+ 1 are given.

-1,y=x2and

X -1 0 I »
y=(x-1)° - 4 I 0 ~
y=x" 1 0 1
y=(x+1)’ 0 [ 4

r 3
i : \ /!
y=(x+ D" ol y=x’/y=(x-l)’
“ " X /
N\ /l

Observe that graphs of y = (x - 1) and y = (x +1)? are similar to the graph ofy= x? but

are shifted one unit right and one left respectively on the x-axis.

3. The Circle
The equation ol a circle with radius *r"_and center (0, .0)
iSX2+yl=fzbO[hﬂly:=rz—X2:>yzi\}1'2—X2‘ ' o

This equation does not represent a function because we se¢
that for one value of x, there are (wo values of y. Moreover, Dy = [- 1, 1]

(i) y=vr' - x? is the upper semi — circle and the equation
y= —Jr? —x? represents the lower semi — circle.

Bothy = Vr’ = x2and y=-vr’ - x” are functions and

. . 2
each one is called the branch of circle X + y2 =1

N
(ii) The equation x?+ y* = r* can also be written as w e
\ A

xl=- y3 +1” so that x =i\[r2 —y’ . Since x is

positive on the right of y — axis, therefore graph of
A

X= \frz —y? is the right semi — circle.

Similarly x = ——\/rz —y* represents the left semi—circle. |
Remark: The circle x* +y* = | whose center is at the origin '
and the radius is 1, is called the unit circle.

4. Square Root Function -
Square root function is defined by f (x) = JX. x=0-

The domain of the square root function consists of -

all nonnegative real numbers, that is, (x > 0).

because square root of a negative number is not

a real number. Graph of this function is shown here.

5. Cube Function

wmio" is defined as f(x)=x", x€ R. The domain of the cube function
10

3
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consists of all the real numbers. The graph is shown as under.
6. Reciprocal Function

"The reciprocal function is defined as: f(x) = 1/x, x # 0. The graph of reciprocal function is
shown here and is known as rectangular hyperbola. 4

Cube Function j ) Reciprocal Function

e

7. Constant Function
Let f:R - R be defined byf(x)=cforall xeR,¢ being a fixed real number. Such
function is known as constant function. '

: >
lllllllll L3
v,

'3

t L c f(x) =c,c>0
5 &
q f(x)=c,c<0 -
0
REMARK: (i) Function f(x) = c is a straight line parallel to x — axis (ii) f(x) = 0
represents the x—axis. f(x) = x
8. Identity Function
A function f : R — R defined by f(x) = x for all x € R is called
an identity function. Its graph is a straight line passing through *
through the origin and making angle of 45° with the x and y-axes. /l
Here Di= R.
9. The Absolute Function
A function f: R — R defined by 4
X, x20 )
f(x)—{_x, <\ f(x) = f(x) = x
is called the absolute function.
The graph of f consists of parts of the lines >

f(x) = x and f(x) = -x above the x — axis.

It may be noted that this function is usually denoted by f(x) = | x I. Hence, it is also
known as modulus function.

REMARK: The graphs of y = x| -1, y = Ixl, and y = Ix| + | and those ofy=Ix-1l, y=Ixl
and y = Ix + 1l are shown as under. You may observe the shifting along y-axis and along

x-axis respectively.

4
‘r Syshki+d
=k+1l = Ix| =k-1
y=Ixl ¥ y N e y ’
A . N ’
o fer RN BN ’
y= |XL- 1 4 M, L X ‘ ¢
~ 4 '-,. ..l' N 4 7
~ ™ L ’ > et St -
~ s .
~ s '
ﬁ/

Bracket Function ]
(li()).(i}r::;te:: Integer Function: A function whose value at any number x is the greatest

integer less than or equal to x, is called ‘Greatest Integer Function® and is usually denoted

by f(x)=|x |. Itis also known as “floor function”.

11
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! The graph is shown here.
¢ f(x)=0, 0sx<l & —
i o—
' =1, 1€x<?2 ¢—
=2, 2<x<3 —>
| =3, 3<x<4 —-
C—
............................. = =
=-1, -1€£x<0

! | =-3, -3<x<-2
| Notice that, (2.4) = 24=2. f
| Cf(a12)=|-12)=-2 f(2)=[2]=2f
[ - . noted that Dr=R. ’
i (ii) The Least Integer Function

i : .
: A function whose value at any num
)=[x]. Itis also known as

(19)=19]=1 £(-03)=|-03]=-1,
(-2) =|-2]=-2 and so on. It may be

ber x is the smallest integer greater than or equal to X,
« Ceiling function”. To draw the graph, we

;i denoted by f(x
find the points given below: 4
. f(x):-l,-2<x:§—l \ <Ag
. =0,-1<x<0 —
=), D<x <1 —0
=2,1<x<2 >
=3,2<x<3 SO
It may be noted that: Rz

F(3)=[3]=3 F(-5)=[=5]=-5 F(24)=[24]=3.
F(19)=[19]=2, f(~0.3)=[-03]=0, f(-1.2)=[~1.2]=1 and so on. Also Dy = R.

11. The Sign Function:
A

The sign function is defined as follows: ;
1
' 1, x>0 |
sgn(x)=1 O x=0: [ "
-1

-1, x<0

The graph of sign function is shown above. For x # 0 we sgn(x) function is also defined
| x| _ x
as: sgn(x)=—=17, D, =R -{0}.
x x|
12. Piecewise Function

Sometimes a function uses different
of functions are called piecewise functions. For ex

formulas on different parts of its domain. Such types
ample, consider a function defined as

under. .
lié f(x) =-x f(x) =1
£ s x<0 S Y
ﬁ Vi g
ﬂ f(x)=1 x*, 0<x<I f(x) = x*
.'? I, X > | k . >
12
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is defined on the entire real line but has values given by different formulas depending on
the value of x.

The graph of this function is drawn by applying different formulas as given in the
function f(x). . _
REMARK: Applications of Functiors and piecewise functions will be presented in the
next section,
13. Polynomial Function : )
An expression of the form a, x" + a5 x" + ...+ 3 X" + a; X + 2 is known as a
polynomial of degree n. Hence, the function of the form

f(X) = ag X"+ anpy X" 4.4y X2+ a2 X +ap
is known.as a polynomial function. The domain of a polynomial function is a set of all
real numbers.

REMARK: A function is called an “Algebraic Function” function if i_t can be expressed
as the sum, difference, products, quotients, powers or roots of polynomials. )

For example, f(x) = 2x> + 5x - 7 is polynomial function and g(x) = (x* + 1)/(x-2),
h(x) = vx? =2x +5 and k(x) = x (x2 +5) + +/2x +5 are algebraic functions.

14. Transcendental Function A"
Functions that are not algebraic are known as transcendental functions. The combination

of algebraic and transcendental functions is also-a transcendental function. Such functions

contain any trigonometric, inverse trigonometric, exponential or logarithmic functions.
For example, the function:

fix)=x+ Vx -6 +cosx —e* + log x is a transcendental function.
15. Bounded Functions
A function f(x) from R to R is said to be bounded if range of f is bounded otherwise it is

unbounded function. For example, f(x) = V4 —x” is bounded function because its range
is [-2, 2]. This function represents the upper half of the circle centered at origin and
radius 2. Graph is shown on page 10.

The functions f(x) = x°, g((x).= x'+ 1 are unbounded because the range of f(x) is the set of

non-negative real numbers and that of g(x) is the set of all real numbers. Both sets are
unbounded hence f(x) and g(x) are unbounded functions.

16. Circular and Hyperbolic Functions

Circular Functions ) :

Readers are familiar with trigonometric functions such as sin x, cos X, tan x etc. These
functions are also known as circular functions because they are having a relation with a
circle. For instance, cos x and sin x satisfy the equation x” + y'=1ofa circle, therefore
these functions are called circular functions. In' this section we shall look at these
functions from different angle. However, we have to make some assumptions which we
shall prove later on.

The trigonometric function sin x, cos x and exponential function e* are the functions,

which can be expressed in infinite series of non-negative increasing powers of x. Such
series are called “power series” and are given by:

3
X 5 7

sinx =x = — + 2 X +

\ - 3 5! _'7—' (1)
- 2 X4 xf)

COosX = __2'[_‘*_?—_6"_!—*"” i (2)

2 3
. x> x x* X x& KT
e =l+x+—+—+—+—+—

TR TR TR TR TR 3)

13


http://www.itwebister.com

FARKALEET SERIES _ APPLIED CALC ULUS
Replacing x by ix in (3) where i(iota) is an imaginary unit and i = J—_l, suchthat =

-1, we get

P2x3 %%t % i%E i
+ + + +

3! 4! 5!+ 6! 7!

e Cox2 i x' i x* i
e =l+ix-———+—+—-———+

20 31 4 5t 6! T

ix [ x* x' x° ] ( ¥ o5 ¥ J
e =| b T m e [Fi[ X = e
2! 4! 6! 3 st n

Using the first two series, we get
e =cos x +isinx 4)
This identity was established by Euler and therefore is known as “Euler’s Identity” or
“Euler’s Formula”. Replacing x by X in (4), we get

-1X

e = =cosXx—isinx ‘ ()

NOTE: sin (-x) = - sin x and cos (-X) = cos X

+

x ‘ ilxz
e =1+1x+
2!
2

Adding (4) and (35), we get: e +e™ =2cosXx = cosx = =y

5 i " . . -€
Subtracting (5) from (4), we get: €™ —¢™" =2isinx = sinx = 5
i
Now by definition,
. X _ -ix\ /n: _ f 1x -ix
sin x (e € ); A _ 2™ Lo 1 1(e +e )
COs X (c”‘ % e'"“) 2 i (e"‘ AN ) tanx e —e™
] 2 1 2i
SeCX = X ,CSCX = —— =
cosx ¢*+e™ sinx g™ —e™

Hence, we have ‘six circular functions’ given below:

(ii) Hyperbolic Functions
In the following figures, we have shown the graphs of the exponential functions ¢" and

e " respectively. Moreover, the graphs of the curve y = (e" +e ™ ) /2 and that of

y =(c‘ -c")l2arc also shown below:

| /- \ T
| |
| |

| _ :

e y
r— T
- i . HE )



http://www.itwebister.com

o, T o e Seme -t Sn e S S S i - i S S e SR B LR R

1

FARKALEET SERIES APPLIED CALC ULUS

NM Mllhny- coahfn) mmr- adniv{x)
e ;

T ——p—

-

r e ™ —=— T Ty
]

&

i

|
f
|
|
|
1
1

i
| |

[ 1 T 2 o} * Al | ' r Tt
] Ly L !
a4y a . ' ay E)

i1 4 = 1 3 i 1 . .
L] 1 ? L) - as NEY 1] . L] L] .
X -alva XN-airn

It is found that these two functions have properties which in many respects are similar to
those of y = cos x and y = sin x. It has been known that hyperbolic functions bear a
similar relation to the hyperbola which the trigonometric or circular functions do to the
circle. The function y = (¢* + e™)/2 is called the hyperbolic cosine of x, and
y = (e" - e*)/2is called the hyperbolic sine of x.

.These are abbreviated to cosh x and sinh x respectively. They are defined by the

equations stated above, that is: cosh x = (¢* + €*)/2 and sinh x = y = (€* - ¢ *)/2.

They describe the motions of waves in elastic solids, the shapes of hanging electric power
lines, and the temperature distributions in metal cooling fins. There are four other
hyperbolic functions. They are

) x o -x\)/ _ "

sinh x (c © )/2 e —c* 1 et +e*
tanh x = = — = . cothx = = ;

cosh x (e‘ +e* )2 et +e* tanhx e* —¢™*

I
] 2 : I 2

sechx = = , cschx = — =3 .

coshx e* +¢™ sinhx e* —¢™
Hence we have six hyperbolic functions given below:
sinh x =y =(e*-e™)/2. coshx = (e +¢™)/2
tanhx = (e —e™)/ (e*+ e cothx=(e"+e™)/ (e -e™)

sechx=2/(c"+e™) csch x =2/(e* +e™) ‘

REMARK: The curve of cosh x is an important one. Flexible wire with fixed ends

Itis called the catenary, and is the curve formed by a
uniform flexible chain that hangs freely with its ends
fixed. The graph of catenary is shown here. :

These functions can be expressed in the form of series, which are derived from the series
2 3 2 3
o :

. X -
for e*. Since, e* =14+ x+—+—+... and e* =|._x+__x_.+.... -
2t 3! 2! 3!
Hence by addition and subtraction:
2 4 x'_)’ 5
coshx =1+—+"—+... and sinhx:x+_+_x_+...
2! 4! 3t 5

Hyperbolic Identities

There is a close correspondence between formulae expressing relations between hyperbolic
functions and similar relations between circular functions. Consider the following,

2 2
X -X X -X
; c +e -
cosh? x =sinh?x =| —"% - | _|& =€ .
. 2 7 .

:i{(c" +e"): —(cJt -e* )‘}=;:—(cz" +24e 7 el +2~eﬁ2")=
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Thus, cosh® x —sinh’ x =1 (1)
This is the basic relation of hypefbolic functions and is analogue of the trigonometric
relation, cos’ X +sin’x =1-

Dividing both sides of (1) by cosh® x, we get

1—tanh’ x =sech’x (2)
Dividing both sides of (1) by sinh? x, we get

coth’ x—1=csch’x (3)
Vertical Line Test
The definition of a function says that for every x there is one y. The graphical
interpretation of this idea is considered in the vertical line test. If a vertical line (VL)
intersects a curve in two or more points, then the graph of the given curve does nol

represent a function. In this case, there would be two or more y values corresponding (o a
particular value of x. See the following figures:

VL & VL
T [ g > /——_\]\ >

The graphs of first two figures do not represent functions tﬁ:cuusc \r’Ll cuts the graphs at
two points, whereas, the last two graphs represent the function because VL cuts the
graphs at only one point.

1.3 PHYSICAL APPLICATIONS OF FUNCTIONS

There is perhaps no.field or area where functions are not used. In real life, where there is
a relation between two variables, the application of function is must. These applications
are found in social and natural sciences, engineering and medical sciences, elc.
Applications of functions are also known as mathematical modeling of functions.

Case Studies (Applied Problems and Simple Mathematical Modeling)

Example 01: A rectangular fence is to be constructed so that its length is 3x + 2 and
its width is x meters. If P is the function that gives perimeter, determine P(x)?

Solution: Perimeter is the sum of the sides of any polygon. Ix+2 /
Now for rectangle as shown in the figure, [
P(x) =2(3x + 2) + 2x = 8x + 4 meters. X

Example 02: A colony of bacteria is placed into a

growth inhabiting environment. The number of bacteria present at any time t
( in hours) is given by n(t) = 1000 + 20t + t>. Find: n(0), n(1) and n(10). Interpret
your results.

Solution: n(0) = 1000 + 0 + 0 = 1000. This means that at the beginning (t = 0) the
number of bacterial in the colony is 1000.

n(l) = 1000 + 20 + 1 = 1021. This means that after one hour, number of bacteria in the
bacterial colony 15 1021. ‘
n(10) = 1000 + 20 (10) + (10)* = 1000 + 200 + 100 = 1300. This means that number of
bactena in the colony after 10 hours is 1300,

Example 03: When a car is moving at x miles pcr hour and the drwer decides to

slam on the brakes, the car will travel x + 0.5 x* ft. If car travels 175 ft after the
driver decides to stop, how fast was car moving?

16
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Solution: The answer to this problem is very simple. Equating both conditions, we get:
X+0.5x*=175 :
x” +2x - 350 =0,
ing, we obtain: x = 17.8 |18 miles/h.

A person weighing 150 pounds on earth has weight given by:
w(d) = 2,400,000,000

(4,000 + d)2

Multiplying by 2, we get:
This is quadratic €quation. Solv
Example 04:

miles above the earth surface,

a. Find w(0) and interpret this? .
b. How much this Person weigh while flying in air plane at 29,000 feet?

C. An astronaut orbits the earth at an average of 80 miles above the surface. If
he weighs 150 Pounds on earth, how much does he weigh while in orbit?
Solution: (a) w(0) = (2, 400, 000, 000)/(4, 000)2 = 150. This means that weight of a

Person on the earth is 150 |bs,
(b) d =29, 000 fr = 29, 000/(5280) = 5.5 miles.
Putting this in given equation, we get: ’

W = (2, 400, 000, 000)/(4005.5)? = 149 6
This means the weight of person at the height of 29, 000 ft

(c) Putting d = 80 in the formula, we get:

W = (2, 400, 000, 000)/(4080)* =144.2 Ibs

Example 05: A number of degrees d in each interior angle of a region of polygon of
n sides are: d = (180n — 360)/ n

(NOTE: 1 mile = 5280 ft)

above the ground is 149.6 Ibs.

Use this formula to compute the number of degrees for a polynomial of sides 3,4, 5
and 6.

Solution: If n = 3, d = [180(3) - 360)/3  60°
Ifn#4,d=[180(4) - 360)/4 = 90" = Each angle of square is 90°,
Ifn'=35, d=[180(5) - 360)/5 = 108° = Each angle of regular pentagon is 108°.
Ifn=6,d=[180(6) - 360)/5 = 144° = Each angle of regular hexagon is 144°,
REMARK: This formula is valid only for regular polygons. :
Example 06: One of the methods to determine the children’s dosage D of medicine is
given by D(c) = [c — 1]a/24 where, c is the child age and "a’ is the dosage of adult. If 3
“ child is 8 year old, what is his dosage if adult dosage is 400 mg? Interpret the result.
Solution: Putting ¢ = 8 and a = 400, we get: D = (8 — 1).400/24 = 116.7 mg. Thus

according to formula given, if the adult dosage is 400 mg and the child is 8 year old then
his dosage will be 116.7 mg. '

Example 07: The following formula is
item: D = C - [(C - S)t}/n where t is ti
years, C is the original cost, n is the u
(Resale value). What will be the depreci
it was purchased for 3400 dollars and i
and the useful time is 15 years?
Solutiori: Here, C = $3400, S = $400, n = 15 years, t = 8. Thus,
D = 3400 - [8(3400 - 400))/15 = $1800

Thus depreciated value of the machine after 8 years was $1800.
REMARK: In this problem, we are told that afte
$400 and we are asked that under this conditio
years of its purchase.

= Each angle of equilateral triangle is 60°.

used to know the depreciated value of an
me in years, D the depreciated value after t
seful life in years and S is the scrape value
ated value of the machine after 8 years when
ts present value (scrape value) is 400 dollars

r 15 years the value of machine js
n what was the value of machine after 8§
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Example 08: Consider the following data on length y and age x of an alligator.
X 1 2 -
y | 14 2.6

Assume the relationship between two variables is linear (y = mx + ), find
(a) The length of alligator when it is 4 years old
(b) The age when alligator is 6.8 feet long . '
Solution: From geometry we know that slope of a line is m = (y2 — y/(x2 — x;). Using
the above information, m = (2.6 — 1.4Y2 -1) =12 Thus relation between length and
age of alligator is:
y-yi=mx-Xi) >y-14=12(x-1) 2>y=12x+02 .
(a) If alligator is 4 year old then its length y = 1.2(4) + 0.2 = 5 feet.
(b) If alligator is 6.8 feet long then: 68=12x+02 =¥ x=5 Y2years.
Example 09: Workers at a fast food restaurant earn $5 per hour for the first 40
_hours in a week and then $7.5 per hour for additional hours. Let x be the number of
hours worked in a week, write a two piece function P that describes a worker’s pay.
What would be the pay if a worker works for (a) 35 hours (b) 45 hours.
Solution: If a worker works for 0 up to 40 hours, he will be paid $5 per hour. Hence his
pay is a function of x (hours), which is
_ P(x)=5x for 0<x <40 \
When x is greater than 40, the worker makes $5 per hour for 40 hours ($200 total) plus
$7.5 per hour for each extra hour over 40. Now the extra hours are (x — 40) and then
earning woulgsbe {200 + 7.5(x —40)} dollars. After simplification, we have:
P(x) = 7.5x — 100 for x > 40
Thus, the two — piece function P is given by the formula
B( 5x, for 0<x <40
) 7.5x =100, for x >40
Now P(35) = 5(35) = $175, and P(45) = 7.5(45) - 100 = $237.5
Example 10: The monthly charge for water in a small town is given by
F(x) 18, for 0£x<20
18+0.1(x —20) for x>20

where x is in hundreds of gallons and f is in dollars. Find the monthly charge for
each of the following usages.
(i) 30 gallons (i) 3000 gallons (iii) 4000 gallons
Solution: (i) Since, x is in hundreds of gallons, hence 1 unit of gallon will be
1/100 = 0.01. Thus 30 gallons will be equivalent to 0.30 units. Now, according to the
given domain: f(0.3) =$18
(ii) Since x is in hundreds of gallons, 3000 gallons will be equivalent to 3000/100 =30
of units. Now, according to given domain: :

f(30) = 18 + 0.1(30 - 20) = $19 -
(iii) Since x is in hundreds of gallons, 4000 gallons will be equivalent to 4000/100 =40
of units. Now, according to given domain:

f(40) = 18 + 0.1(40 - 20) = $20
REMARK: 1 Gallon = 4.546 liters.
Functions in Economics
Functions that provide information about cost, revenue, and profit can be of great value to
management. This section offers an introduction to the cost function (C) revenue function
(R) and profit function (P). We begin by establishing the notation for three important
types of functions. Using x for the number of units produced and/or sold, we have

18
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Cost, Revenue, Profit

C(x) =The total cost of producing x units.
R(x) =The total revenue from the sale of x units.
P(x) = The total profit from the production and sale of x units.

Example 11: Assume that the cost of producing x computer chips is
C(x)=04x*+7x+95$
(a) Find the cost of producing 20 chips
(b) Determine the cost of producing the 20'" chip
(c) Determine the cost of producing no chip. Interpret the result

Solution: (a) The cost of producing 20 items is C(20) = 0.4(20)2 +7(20)+95 = $395.

(b) The cost of producing the 20" chip = C(20) - C(19) = 395 -372.4 =226 dollars.
(¢) C(0) = $95. This means if no chip is produced; the cost is $95. This is also known as
fixed cost. It includes the cost of the machine, purchase of equipments and raw material,
design and other expenses that exist before the production starts,
A profit function P(x) is sometimes given directly, however, it may be determined using
revenue and cost function as under:

Profit = Revenue - Cost OR P(x) = R(x) - C(x)
Example 12: It costs a manufacturer C(x) = 0.4x* + 7x + 95 dollars to produce x

computer chips. They can be sold at $40 each; that is, revenue from the sale of x
chips is R(x) = 40x dollars.

(a) Determine the profit function-

(b) What is the profit on the manufacture and sale of 25 chips?

(c) What s the profit on the manufacture and sale of 25" chip?

(d) What is the profit on the manufagture and sale of 2 chips?
Solution: (a) Using P(x) = R(x) - C(x), we have

P(x) = 40x = (0.4x* + 7x + 95) = -0.4x> + 33x — 958

(b) P(25) = -0.4(25)" + 33(25) - 95 = $480.
This means on manufacturing and sale of 25 chips, the profit will be $480.
(¢) The profit on the sale of 25 chip = P(25) - P(24) = 480 — 466.6 = 3134
(d) P(2) = -0.4(4) +33(2) - 95 = -30.6
The negative sign.shows that there is a loss of 30.6 dollars. This means that the
would loss $30.6 on the production and sale of only 2 chips.
Break-Even Point (BEP)
When the production level x is such that revenue and cost functions become equal that
when R(x) = C(x) then profit is zero. Such value of x is known as break-even point. This
indicates that company is running with “No Loss and No Gain”.
Geometrically, BEP is that value of X where the graphs of C(x) and R(x) intersect each
other. This is depicted in the following figure. This phenomenon is very much important
for the managers to see that how many items should be produced to have a profit.
Example 13: The management of a publishing company informs the marketing
' department that the profit function is P(x) = 0.08x — 15, 200 dollars where X is the
number of items that are sold of sales,

(a) How would management react to sales of 100,000 items?

(b) How many dollars of sales are needed to break — even?
Solution: (a) When x = 100,000, we have,

P(100, 000) = 0.08(100, 000) - 15, 200 = - 7, 200 dollars

This indicates that the management will bear a loss of $7200 at the sale of 100,000 items.
Thus marketing department will suggest the management to increase the production level.

company
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o BEY
L
L { £
- A
: / Break-Even Quantity R
— >
Loss " Profit
(C>R) (R>C)

, (b) For break — even, point, the profit must be zero. That is,

\ _.08 x - 15,200 = 0 =» x = 190, 000
Thus, 190,000 of items are to be produced and sold for the break—even point. In other
words, the management must produce and sale at least 190,000 items to save the
company from any loss.
Example 14: (Price and Demand) Assume that for some product, the equation
p = 80 — 0.2x dollars gives the relationship between the price per unit p and the

quantity x demanded. How many items are demanded if the price is set at (a) $70 (b)
$65? Interpret the two results,

Solution: (a) If p = $70, then: 70 =80 - 0.2x > x =50

(b) If p = $ 65, then: 65 = 80 — 0.2x "> x=75

This shows that if price is set at high side the demand will be less and if the price lies on
the low side, demand will be at the high level.

Example 15: If price of one unit is p = 80 — 0.2x what will be the revenue function if
x items are sold? Find R(90).

Solution: If R is the revenue function and p is the price of one unit then revenue from the

sale of x unis is: R(x) = px = (80 - 0.2x) x = 80x — 0.2x” dollars.

Then, R(90) = 80(90) — 0.2 (90)* = 5580 dollars.
WORKSHEET 01

I: Draw the graphs of the following functions. Also mention the domain and range of

these functions.

(a)y=2x+7 (b)y=2x"+1 ©y=+Dix=1)

2. Solve each of the following inequalities: '

(a) 12x + 51> 12 - 5x () Ixl +1x— 11> | (€) 12X’ = 25x + 12> 0

X +x+1>1 (e)x*—4x" +4 >0 (N 2x/(x +2) > x/(x = 2)
. R 1 .
3.If f(x)=vx" =1 and g(x)=\/___,sh0wthalf0g;tg0f.
4-x’

4. In 1998, a patient paid $300 per day for a semipriv: i
) : private hospital room ¢ ¢
appcndcctpmy operation. Express the total amount for an ap:))cndeclom dl.ld $If500 for an
number of days of hospital confinement. S BB
5. In some cities you can rent a car for $18 '
: ‘ per day and $ 0.20 i
a. Find the cost of renting the car for one day and driving 2009:3‘:'“'2:155-
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b. If the car is rented for one day then express the total rental expenses as a function of

the number x miles driven. _ .
6. Suppose the longer side of a rectangle has twice the length of shortcr side, and if x 1s
length of shorter side, express the perimeter of the rectangle as a function of x.
7. The monthly charge (in dollars) for x kilowatt hours (KWH) of electricity used by a
commercial customer is given by the following function:

7.52+0.1079x, 0<x<5

19.22 40.1079x, 5<x<750
20.795+0.1058x, 750<x <1500

131.345+0.0321x, x>1500
Find the monthly charge for the following usages.
(a) 5 KWH (b)6 KWH (c) 3000 KWH.
8. The pressure P of a certain gas is related to volume V according to: P = 100/V
(a) Is 0 in the domain of this function? .
(b) What are P(100) and P(50)?
(c) As volume decreases, what happens to pressure?
9. The total cost of producing a product is %ivcn by

C(x)=300x+0.1 x*+ 1, 200 dollars

where x represents the number of units produced.
(a) What is the total cost of producing 10 units?
(b) What is the average cost per unit' when 10 units are produced?,

10. A cigar box distributor’s revenue is R(x) == 1.35 x dollars. Where x is the number of
boxes sold.

(a) How much revenue is obtained from selling S boxes?

(b) How much revenue is obtained from the sale of 5™ box?

(c) How much revenue is obtained from the sale of 8" box?

11. It costs a TV manufacturer C(x) = 0.1 x* + 150x +1, 000 dollars to produce x TV sets.
The revenue from the sale of x TV sets is R(x) = 280x dollars.

(a) Determine the profit function.

(b) What is the profit on the manufacture and sale of 50 TV sets?

12. The cost on producing x radios is C(x) = 0.4 X% + 7x + 95 $. The revenue received is
R(x) =40x $. What is the profit function” Find P(24) and P(25). What is the profit on the
sale of 25" radio?

13. A psychologist needs volunteers for an experiment. She offers to pay $ 8 per hour for
volunteer who works up to 5 hours. Those who work more than 5 hours are paid $10 per
hour for additional hour.

(a) Write down the function that repre:sents the volunteer’s pay V(x), where x represents
the hours worked. (b) Also find V(5), V(10) and V(15).

14. 1f p = 0.01x + 19 dollars is the price of one jacket and each jacket is sold for $80,
determine the profit function and the:n find P(2) and (50). What is BEP?

15. Sketch the graph of following fjiecewise functions.

{ . f
(a)f(x)z{z for x <0 (b)f(x):{x or x<0

C(x)=

x for x <1 Ixl for x<0
(c) f = (d) f(x)= -
i) Jl\/; for x >1 () {2)( for x >0

16. A motorbike was purchased 2 years ago for Rs. 50, 000 is now worth Rs. 25, 000.
Find the linear relationship between its value (y) and the life (x) in years.
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(a) How many -years from the time of purchase will it be before motorbike is worth
Rs. 35, 000.

(b) What would be its cost after 10 years?

17. A house was purchased 5 years ago for Rs. 5 million is now worth Rs. 8 million.
Find the linear relationship between its value (y) and the life (x) in years. '

(a) How many years from the time of purchase will it be before house is worth Rs. 6
millions. _

(b) What would be its cost after 8 years?

18. State which of the following functions is evenorodd. -

(a) f(x) =x* + x> - |

(b) g(x) = x+sinx+1

(c) h(x) = x> - x

(d) k(x) = Ixl + cos x - 2

19. What is the domain and range of the following functions?

(i) fx) = 1 = 1)

(i) g(x) = (x + NI(2x - 1)

(i) h(x) = /x> +9

(iv) k(x) =
16-x*

|

(vi) n(x) = m

(vil) p(x) = Vx? ~16

(viii) q(x) = Jx2-16/4x* -9

(v) m(x) =
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TWO LIMITS AND
CONTINUITY |

APPLIED CALCULUS
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2.1 THE CONCEPT OF LIMIT

The concept of limit of a function is one of the fundamental jdeas that distinguish
CALCULUS from other branches of mathematics.

We remove half of the disc, area of remaining part is 1/2. If we further remove half of the
remaining disc, the area of the left over part is 1/4 or 1122, By further removing half of the
remaining disc, the area of left over part will be 1/8 or 1/2°. If this process is continued,
that is, at CVery step we remove half of the remaining disc; the area of left over part at the
n' stage will be 1/2". Thus, we observe that there is always some portion left over,
however small might be, and the process will continue indefinitely. The area of the left
over part gets smaller and smaller and ultimately it wi] decrease to zero. We describe this
fact by saying that limit of the left over area is zero. More precisely, we say that the limit

; . ‘ 1 1 1 ;
of sequence of numbers: i i B zero.

2227277 ond
Before giving informal definition of limit, consider the function, f(x) = (x* - 25)/(x - 5).
This function is defined for all vales-of x_except 5. For If we substitute x = 5, we get
[(5) = (25 - 25)/(5 - 5) = 0/0 which is a meaningless quantity. One could perhaps say
here that why don’t we caricel (x = 5) first and then putx =5 to get f(5) which is equal to
10. There is a lapse in this argument as (x - 5) is zero when x = 5 and cancellation of zero
factor is not allpwed in Mathematics. Consequently, we cannot determine the value of
f(x) at x = 5. But we do not leave the problem here. Instead, we (ry to evaluate the value
of f(x) when x is very near to 5 and this will finally lead us 1o a value that would almost
be the value of f(5). Thus we can evaluate f(x) at x = 4.99 or x =5.1. The technique is
quite simple. Cancel (x-5) first (this step is perfectly legitimate as x s not equal to 5);
then substitute the value of x. For cxample, f(4.99) = 499 +5=999 and f(5.01)=5.01+
5 = 10.01. We now write down some of the values given to x and the corresponding:
values acquired by f(x) in the following tables.

Table 1: x approaches 5 from left

E - 4 ] 4.7 [ 49 | 499 4.999

f(x) 9 9.7 l 9.9 9.99 9.999
< 4 ' 47 49 499 4999 s
Table 2: x approaches 5 from right:
| x 5001 [ _ 501 535 5.6 — 6
L fx) | 10000 | 1001 1035 10.7 1
. 1# 1 ] | -
S 5.001 5.01 5.35 5.7 6
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‘This example leads us to an informal deﬁni.tion of limit.
Follmal and Informal Definitions of Limit
Fon‘n?lbmali-:mtr:c:lll number and let f be a function from R to R whi(_:h is (-ieﬁn.ed for all x
e ‘:‘ wiyth the possible exception of the point x = a. The function .f is said to have z:
Illi‘:::lllti (where L 1s real) as x approaches *a" if for every £ > 0, there exists a positive rea
number 8 (usually depends on ¢) such that

“ If(x) = L)l < e wherever 0<Ix—al<o.
In this case, we write: P.T.f (x) =L

Example 01: Prove, by definition, that ii m 2x = 6.

Solution: Here f(x) =2xand L=6and a = 3. Thus by definition,
If(x) - L) =12x = 61 =2 Ix - 3I.

Now let, x=-31<d DIfx)-Li<2d=¢

This proves that: lim 2x =6

x—3

2
- - . XD
Example 02: Prove, by definition, that 11_:312 1

=2
x2+2

x+1

Solution: Here f(x) = and L= 6/3 = 2 and a = 2. Thus by definition,

x2 + 2R
X+1

x> —2x

Xx+1

x(x-2)

X+1

|f(x)—f(a)|=|f(x)—L]= -2

x> 42
x+1

I
|

X

-2

Ix - 2| <]
x+1

Now lel, Ix =21 <d -)If(x)—lel d=¢

(<~
X +1
o ox%+2

lim =

x=3 X +1

This proves that:

2
Informal Definition

Let a function be defined for all values of X except possibly for x = a where *a" is a real
number. The function f is said to have the limit L (a real number) as x approaches “a’, if
the value of f(x) can be made as close to L as we please by taking x sufficiently close to
(but not equal t0) “a'. In such case, we write:  limf(x) =L

X—a

Note that x may be close to “a" both from left and right of "a’.
Sometimes,limf (x) can be evaluated by calculating f(a).

K-

This holds, for example,

whenever f(x) is an algebraic combinatidn of polynomials and/or trigonometric functions
for which f(a) is defined. For example,

(a) limx =3 (b) lim(5x-3)=10-3=7

? -1 x—2 L]

‘C) li“.:l[‘+cosx)zl+l:2 (d) llm 3x+4_‘6+4 2

-2 X+ 5 —2+5= 3
Theorems on Limits

Theorem 1: If lim f(x)=L and l’lﬂ)g(x) =M (L and M are real numbers). Then

24



http://www.itwebister.com

FARKALE
ET SERIES _APPLIED CA! CULUS

1. Sum Rule:

um Rule l:_r::[f x)+g (x) ] L+M—hm[f ]+Iim[g(x)]
2- D-" ' X—d . X—,

ifference Rule: lrm[f x)-g(x) ] L-M= llm[ (x)]—liﬂ![g(x)]
3. Product Rule:  lim[f (x)gx)]= Lm = lim( f (x)] tim[ g(x)]
4. Constant Multiple Rule: !im kt(x) kL = khmt( X), k-zR-
5. Quoticnt Rule: lim m o = E_(x—) M=#0. =

=ag(x) M limg(x)

6. Power Rule: 1f m and n are integers, then lim[f(x)}? = L:,pmvided LLf
is finite. o

7. Identity Function: If f is an identity function f(x) = x then for any value of a:
' limf(x)=limx=a-
X—%a X—d

8. Conslant Function: If f is a constant function, that is; f(x) =

limf(x)=limk=k-

X—a X—

Theorem 2: If P(x)=a,x" +a_ x"" +

k then for any value of a:

~~+a,, then -

limP(x)=P(a)=a,a +a a"" +.

..+a“.

Theorem 3: If P(x) and Q(x) are polynomials and Q(x)# 0, then
Tim [Pex)/Q(x)] = P(a)/ Q(a)

_ x‘+4x3 3 1+44-3 2 1,
For example, lim = =

x— | x>+ 5 1+5 6 3
Theorcm ] dpplu_g only when the denominator of the rational function is not zero at the
limiting point “a’. If the denominator is 0, canceling common factors in the numerator
and denominator will sometimes reduce the fraction to one whose denominator is no

longer zero at "a’. When this happens, we can find the limit by substitution in the
simplified fraction.

REMARK: It may be noted that almost every pmblc_rn of llmll involves indeterminate
expression such as (0/0), (w0 /), (0 x ), (0 - o), (0), (1), («"). When such expressions

occur we have to workout the given problem to get some definite value. We shall show
you this in coming examples and theorems.

x*+x-2

Example 03: (Canceling a common factor) Evaluate hrnI _—
X X - X

Solution: We cannot just substitute x = 1, because it makes the denominator zero.

However, we can factorize the numerator and denominator and cancel the common factor

to obtain:

2 - 2 N | 2
Xax=2 (DO X2y phgs, im A2 K42 142
Y P R A s oy
x' -8

Example 04: Evaluate hmﬂ =
~»2x?2
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=1\ ===

ST

Xx—pon

] X
2. Prove that Iim(l+-;] =e

Proof: Using binomial theorem, we have

x x(x-1) 1 x(x=D(x-2) 1
lim I+l = lim l+xl+ ( )-—7+ ( )( )-—3+
VTS T % M o El X

(1o “(1=-1/x)(1-2/x
=1im{l+l+x—l ‘\-( ) )+}

x—yes 2" 3%’
i -1 I-1/x)(1-2/x -
=lim{1+1+( - J+( i )+}
X e 2! 3!
Applying the limit on the right hand side, we get
lim 1+I—) =1+l+i+i+... Note : lim~ — 0
Xt X 2t 3! x = X

The sum of this well-known infinite serics is approximately equal to.2.71 828. This
sum always lies between 2 and 3 and is denoted by e. Thus:*

lim(l+l) =1+1+71—|+L+...=c

X—o X At

Corollary: In the above limit, if we puty = 1/x then y will approach to 0 as x approaches

o o, Thus, lim (’H-l] =Iim(|+y)"”r =€

X —pon X y—0

REMARK: It may be noted that 1-1 +%_?:"r+"' =¢ ! = :
” S e

Example 08: Evaluate'(i) lim [l —i} (ii) lim (l + l] (iii) lim (l + m)
X

o K=peo X —poo X X —don X

X X - -1
Solution: Iim(l—l) = Iim[H(—lﬂ = lim {[H—(—lﬂ ] =(g:)_F =l
X —poo X X —yoo X X —yom X I ) &
(i) nm(1+l) = lim (1+l} ] = ()" ="
X —doo X x—vooL X

X x/m ™
i) tim{ 1+ 2] =tim|[ 142 =(e)" =e"
X —poo X X —$oo X

L
a1 il NSE
3. Prove that| lim =Ina VR
X —heo X aaat

Solution; If we place x = 0 in the above function, we get once 0/0 which is :
indeterminate expression. To find the required limit, we proceed as under: o
Puttinga* - 1 =y < a* = | + y. Taking log o each side, we get .

Moreover, as x tends 10 0, y also tends to 0. Hence,

28



http://www.itwebister.com

FARKALEEY SERIES

. APPL!ED CALCULUS

. a -]
lim =lim—3Y o Ina g Ina
=0 x y—0 ln(l+ ) . ys0 ]n(]+ y) E_T) 1
——21 = allry) el gy
Ina y y
Z lim Ina | . 1 1
o e o mhmadihm —o— =lnal — |=Ina
Y In(1+y)" Y ln(1+y)"” (me]
N S
li = . i Iy = =
lim . Ina. Note: 1l|_r1(1](1+y) =e,lne=1.
Example 09: Evaluate the following limits:
oo 250 —1 25 — 16"
(i) lim i) lim=> "2 i) 1i &
16" (i) lim . (iii) 11_[.1(1](I+3x)
y oo 25% — 25% — b
Solution: (i) lim l =1lim 2 ]x : = lim L) 1>~<Iim X
20]16% -1 x-0  x 16 —1) x—=0 x x—=0 16 — |
:log25=10g52 _2log5 logs . 25" -1 log5

— = = = lim ;
~o' Y loglé logd®  2logd  logd =016" -1 log4

- 25% _16" X _1-16" 25" —1)-(16* =1
1) lim ST i +l=lim( )| )
x=0 X x—0 X x—0 X
(25" -1) (16" -1) (258 =1) - (16" 1)
=lim<- —= =lim ~—lim -
x—0 X X x =] X x—0) X
25% - 16" _ 25" 5Y 5
Thus, Iin1$=log25—log10=log —Jziug = =2|0g(k
x—0 X 1 4 4
ceae Ux .. ix P T3
(iii) lim (1+3x) =Imé[(I+3x) =le] =e¢
x—() X—
. In(x+h)=Inh ... . sin(x+h)=sinh
Example 10: Evaluate(i)lim ——— (it) lim :
x—0 X Tox=0 X
Solution: (1)
|og(x+h)—ll‘lh | o1 (x+h] 1 X
i =lim—jlog(x+h)—logh}=lim—log =lim—log| 1+ 2
,I\I_I,T(]) X x—0 X { g( ) & } x—0 X £ h x—0 X E h
timtog(1+2) = im1tog[14 %) 1j‘h'—l im(1+2) :
~limlog\ 1) =fimjlog{1+ ) [ =tosjlim{1+3
[y 4 o h I % 3 /
lim log(x +h)-log =loge"" =iloge=—. since, lim (1+x)"" =e &andloge = | (
=0 X h h- X =0 -

“~ £

x+h+h) . [K+h—h
2co8| ———— [sin| ————
. ( 2 J 2
lim = lim

x—0 X x—0 X

o+ C(o-
ii) Since, sina—sinP = 2c05(—7—@)s1n[Tﬁ]-

sin{x + h)—sinh
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(v) limx sin(l) = lim x xlim sin
x—=U X x—0 x=0

[Supposing that

REMARK: The limit lim sin(1/x)
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c:os[l(j—z—Il sin .
: 2 L2 . sinx/2 .. x +2h 2h
= lim = lim lim cos =1.cos| =— |=cosh
x—0 (x/2) x=0 X/2 x50, 2 2
Thus, Tim SRGHM=sinh _ oo
x—0 X

Example 11: Evaluate the following limits:

g o 1 3 |1 3 , 1+x+x*-3
(i) tim| —-— = lim - — |=lim| ———— 3%
1-x (I-x)(1+x+x7)| ! (1-x)(1+x+x")

=l 1-Xx |—x3 x—l

T x24+x-2 =“m'(x+2)(x—|) lim (x +2)(x—1)
=1 (1 ~ sl =x)I+x+x3) ] —(x-D+x+x%)

—x)(l+x+x2)

=1im[_gjﬂr]=i:_,
-3

= —(I+x+x"
. cosecx —cotx . 1 cos X ] . | —cosX
(i) lim| ——— =lim| ——— x—=lim _
x—=0 X x=0| sinx  sInX X x—=0 x SInx
) I —cosx | +cosx ) | —cos *X _ sin” X
=lim - X =lim| ———— =lim|—————
x=0[ X sInX 1+ cosx x—0| x sin X(l +cosx) «—0[ x sin x{1 + cos x)
. | sinx X | |
= lim x lim| —— [=1x== N2
x=0[ X x—0| (14 cosx) 2

23 _ 203
. - X ;
(iii) llmy . Putting y=x+h = h=x-Y. As y
yox  y—X -

— x then h — 0. Thus,

yzn _x23 [x ) | h]m < 23
=lim
h=0  x+h-x

.Apply binomial expansion, we get:

lim
yox o y—X

2 o T 2 4 2 2 2 =3
x2!}+2xjflh+2-[2.—l]x3”hl+_.,—x3” ;;hli'\" +[3——»l]x-‘ h+_,}
I3 lim - h
=l

lim 3
had h - b0 h
s 22 2
=Iim-2- x3 + ~2——|JX‘1 h+..|=—x I
h—0 3 3 3

tan (sin X _ _ _
(iv) lim —_—(——) Putting sinx =z As X 2 T then z — sint=0. Thus,
x =T S x
tan(sinx) . tanz .  SINZ . sinz_ ..
im—-—(-——'—l:llm = =lim = lim——xlimcosz=1.1=1
x—r  SinX 10 Z »07.cosz =0 7z 0

(l}=limxxA=0.A=0

X x—0

lim sin(l/x):A]
x—)

is discussed in the‘next session.
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Limit at Infinity

Sometimes we are concerned with the behavior of a function f(x) as the magnitude
of the variable say x, increases without bound (that is; the magnitude becomes infinitely

large). The limits studied in such instances are called limits at infinity and are written as:
Iimf(x) or lim f(x
X —poo ( ) X—)—oo ( )

APPLIED CAl CULUS

The notation x — o can be read, “as x increases without bound” or “as x tends toward

infinity.” Similarly, x = —eo is read, “as x decreases without bound” or
“as x tends toward minus infinity.”

REMARK: The English mathematician John Wallis (1616 — 1703) was the first to use
the symbol < for infinity.

For instance, consider the function f(x) = 1/x. Larger x becomes; closer 1/x gets to zero.

The table that follows illustrates this statement. The graph of f(x) = 1/x also shows that as
X becomes larger, 1/x gets closer to zero.

t y=1/x
X 2 +10 + 100 1000 ' L
y=1/x 1 +05 +0.1 +0.01 +0.001

We say that the limit of 1/x as x increases without bound is 0. \
This is written as lim 1/x =0.

X —yoo

»

In a similar manner, we can determine that lim 1/x=0.

X 3~

The above limits merely describe the behavior of 1/x as the magnitude of x increases

without bound. They describe the tendency of 1/x toward zero as x tends toward infinity.
Consider next the function defined by

f(x) = 1/x","nis a positive intcger.
Comparing 1/x and1/x", noting that the magnitude of x"is larger than the magnitude of x
when  x is  approaching infinity or minus infinity. Tt

liml/x" =0 and lim 1/x" =0, (neZ+)-

then follows that:

X—poo P

If the function is f(x) = ¢/x" where c is a finite constant, then the limit as X increases or
decreases without bound will still be zero. Thus:  lim ¢/ x".

X —rte

Example 12: Evaluate the following limits
oo 3x —Bx+1
(l) him I

xs=4x” =3x° =16
Solution: We notice that if the value of x is placed oo directly, we get an expression of
the form oe/eo. In order to solve this problem, we notice that the functions in the
numerator and denominator are polynomials and the limit is taken at infinity. In such

cases, one should take common, the term with highest power of x, both from th
numerator and denominator. Doing this, we get

0 —8x 4+l x3(3—8/x2+l/x]):_ (3-8/x*+1/x7)

im ————=1i : '
= 4x” 3% - 16 ‘H"'x3(443/x—]6/x}) *‘”"(4*3/)(*!6/)(’)
Applying the limit now and using the result shown in the above box. we get
' . 3x'-8x+1 3
I|m ﬁ'—_:-
e dx” —3x° —-16 4
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© i) lim (x* +257 +1)

X—poo .
Solution: Here we see that there is an algebral
solve such limit problem, we substitute X = I/y so
y will tend to zero. ' s :

(1=2y+y | _ ..
lim (x3 +2x2 +l) = lim[—l;——Z—l._,—H]: llm(—'__yi—d} To0

X —oo y-0| y° y y—0

This shows that the above limit does not exist.
REMARK: The idea of dividing each term by a power of X 15
infinity. It will not help in the evaluation of other kinds of limits.

¢ expression in the numerator qnly. 'To
that y = 1/x Now if x tends to infinity,

f v is used only for limits at

3 4 3 _ 4
 asx—g . x(1es/x-6/x ) x(1+5/x 6/x*)
(i) hm7—~2—“ = lim b lim i
o x4+ x2 =7 **”x’“+llx—6/x) 25 U+|/x—6/x)
=oco I|+(|)_(()) = oo . Hence, limit of given function does not exist.
+ p——

. . X2+5 _ X2(|+5fxz) ) X”z(]'i-SfX') |+U_
(iv) lim —7—— = lim — — = lim el =0
xR4T o2 (147 /xY2) o (147757 1+0
Thus, limit of given function does not exist. \

(v) lim : - ,a>0. Puttinga =1+h, we get

X —oo X

x[h+ﬂx—Uf/2Hmﬂ

lim :Mnh+xu—nf/ﬂ+m1:h+m+w+”:w
X =0 X X —don J
4~ — 1+h)" =1 —Dh3 /24 .. —
i Izhm( ) :”m1+xh+xu Dh2 /2% .- 1
X —beo X X —yoa X X —peo X

Thus limit of given function docs not exist.
2 . :
" X : a 5 o
(vi) lim L =lim x‘[L— ! =limx- X_H—XL
x=e| X +1 )-;+3 X—3oo X+l Xx+43| x>~ (x+D(x+3)

. 5 2 . x2 2 2 ‘
=I|mx“[——w, }:lum—2 — =— < -9
x| (X7 +4x+3) | x> X (I+4/x+3/x2) 1+0+0

Erri Jx2(1+4/x2) x/(|+4/xl)
———=lim = lim ——ouo—
x—6 = X(1-6/x) x==  X(1-6/X)

1+4/x2
= T ( ):\/|+0=
x=e (1-6/%) 1-0

X -X .
e X . x+1 i T
(viii) Inm(_) =I1m[— =lim i+—I— =lim|] 1 ) =
x| |+ X x =0 X x=0\ x  x x—) = ke

X

i+smx = s l+SinK - s$in x
- ——-x =l+lim——=140=1

X X == .
X —pon x

(vii) lim =

X —yoo

-

(ix) lim ————— = lim

N X X —pom

REMARK:I|sinx

X +sin X [

| <1. This si ays
1. This sin x/x always approaches zero as x tends to infinity
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One Sided Limits (Left Hand and Right Hand Limits)

To have a limit L a5 x approaches ‘a’, a function f must be defined on both sides of “a",

andl its values f(x) must approach L as x approaches *a* from cither side. Because of this
ordinary limits are sometimes called two—sided limits.

It is possible for a function ta appro
one side, either from the right or fro
(either right hand or left hand) li

graphed below has limit lasx
zero from the left,

APPLIED CALCULUS

ach a limiting value as x approaches “a* from only
m the left. In this case we say that f has a one-sided

nit at “a’. For instance, the function f(x)zx/IXI
approaches zero from the right, and limit -1 as x tends

4] -

Let f(x) be defined on an interval (a, b) where a < b. If f(x) approaches arbitrarily close to
L as x approaches “a° from right within the interval (a, b), then we say that f has right-
hand limit L; at *a* and we write- lim f(x)=1L,

Similarly, let f(x) be defined on an interval (a, b) where a < b [f f(x) -approaches
arbitrarily close (o L> as x approaches “a° from left within the interval (a, b), then we say
that f has lefi-hand limit L, at “a". and we write:  lim f (x) = L,

x=al
For the function f(x) = r’ we have, lim f(x)=1 and  lim F(x)=-1.
X ) Do x—0"
REMARKS:
(i) The left hand limit of a function f(x) is shown in two different ways.
f(a - 0y or lim f(x)

Xx=a-0
(ii) Similarly, the right hand limit may be shown as:
f(a+0)or lim t'(x)

Xx—a+l)

(i)  If f(a = 0) = f(a + 0) = L: then limf(x) exits and is equal to L. This means

that if the right and left limits of a function exit and are equal to L
then lim f(x)=L.

(iv) If lcfl_and right limits of a function f(x) are not equal, we say that limit of f(x)
does not exist.

Example 13: Determine lim/x

x—0
Solution: At first glance this limit may look simple, since you could easily believe that
the limit is zero. However, the limit is not zero. Although it is true that lim Vx =0.

=0t
Itis also true that lim Vx does not exist. Why? / f(x)= I
x ="
Because 1f x approaches from the left means x & .,
Is a negative number, and Jx is not defined for A function defined only for x >

such numbers. It may be noted that a function must be defined for all values of x or else

33
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the limit does not exist. The following figure shows the graph of f(x)= Jx, which is ‘

defined only for x 20-

Our Conclusion:
lim J——O and lim \[_ does not exist. Hence, Im:'\/; does not exist.
xX—>

x—0" x=—0"

Example 13: Determine lim f(x) and lim f(x) for the function defined by
x—0"

f(x):{x- x50 fi(x) = x*

x—0*
x+3 x>0 \

Solution: In [hlb piecewise function, the value of f(x) is |
computed as X 2 when x <0 and as x + 3 when x > 0. Thus,

lim f(x)= lim (x+3)=3 and lim f(x )—hm( 2)-—-0-
x—0t x=0% x=—0" x—0"
Since the limits are different, we conclude that Iim f (x) does not exist.

f=x+3

Example 14: Determine lim f(x)and lim f(x) for the function defined by

x—=0" ” x=0"
2x+1 x<1 A
f(x)= 3
4-—x x>0
Solution: Here lim f (x) = lim (4-x)=3 and

-1t ‘——al+

lim f(x) = Iim_(2x+l)=3-

x—1" x—l1

Since the right — hand and left-hand limits 172/ L 3 ¥
are same, that is; 3, therefore, we conclude that

limf(x)=3-

x—l

4=x?
Example i6: Evaluate lim  |———
-2-0Y 6 - 5x + x°

Solution: We observe that the given function is one valued function. To evaluate
the limit of such function, we put x = 2 — h. This gives h =2 - x. Now as x tends
to 2, h will tend to zero. Thus,

4 2 _ _ 2 _ 2

lim ——x——lim\/ vl - :IimJ v
w-o% 5x+x> h-0\6-52-h)+(2-h)> 120\6-10+5h+4—4h+h’
i 4= h? _ h(4-h) _ (4-h) _ |(4-0) _ [4 _
. \/ e \} h(l+ h) a+hy \a+0) V1

Example 17: If f(x)-—( - ]ﬁnd f(2 - 0) and f( 2 + 0). Hence find lim f(x).
- x—2

Solution: By definition, f(2-0)= lim f(x)= lim (x* -4)
x=2-0 x=2-0 (X —2) ’
Putx=2-h=>h=2-x.Asx 2 2, h = 0. Thus,
3 2 .
BT Bm. B i, )y SR = L A=) & 4
x=2-0) x—)“—t) (x 2) h—=() (2 h) 2 h—=0 2—h—'2
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lim D04 _ . b-d4_,
h—0 -h h=0 —]

2
Similarly, f(2+0)= Lim f(x)= Lim (x —4)

x—240 x—=2+H0 (X — 2)
Weputx=2+h=>h=x-2.Asx 9 2, h = 0. Thus,

2 2 g
f(2+0)- hm f(x)= lim (x”—-4) = lim 2+x) 4=Iim 4+4h+h” -4
x=240 (x—2) h=0 (24+h)—-2 h-0 2+h-2
h(h+4) h+4

=lim ——=4
h—0 h h-0 ]

Since f(2 - 0) = f( 2 +0) = 4, we deduce that lim f(x)=4. |

= lim

Example 18: Evaluate the following limits.

. 1
(@) lim - . Putting x =3 — h. As x tends to 3 then h tends to 0.
x—=3-0[ x =3 |x-=3|
Thus, tim |————L | jiml—L 1 | &l gl
x=3-0| x—3 |Ix=31| h=0/3-h-3 I13—-h-31| h-o0o{—h |-hl
= llm[—-l— —-I—] = hm_—2 = —oo . Thus limit of given function does not exist.
h—0 h h h—=0 h
(b) lim w.Puttingxz’l—h. As X tends 2 then h tends to 0. Thus,
x=2-0  x2_4
. x*+2x-8 . (2-h)Y+2(2-h)=8"  4-4h+h’+4-2h-8
m ————=Im s = lim
x—2-0  x*—4 h—0 (2-h)" -4 h—0 4-4h+h? -4
Z .3 h(h-6 h-6) 3
=li h = lim ( )—hm( ) =—
h20h* —4h h—-0h(h-4) h-0(h-4) 2

)
J1 \ (1-x)(1+x) Jl X\[lﬁ-\ _ 1+x V2

(C)hli,r? 1-% x—l—i?'\/(l_x)\/ _ 7)(_* \/l h\/ x]_l:’]: — s

Allernatively putting x =1 —h. As x tcnds to 1 then h tends to O. Thus,

h-(- \/1 l—7h+h2)=“m ey

h-aO ]— 1— h—.n I-1+h h—0 h

lim

x—1" 1-X
—llm\/— = lim —2—=oo
h—0 ‘/_\[_ h—0 \[H 0
o =1=x1=1
(iv) lm ———.
v —l) I'(I
Consider f(0 - 0). Putx =0 -h =» h=-x. As x = 0 then h = 0. Thus
T Y RPN ()t S Y
fO-0) =hm— = I—nl h=0 h Nl
Now consider f(0 + 0). Putx =0+h =» h= x. As x » 0 then h =» 0. Thus
“1-hl-1_ _I=(+h)l=1__ (+h)=1_. h_
f(0+0)="1ii"ol llhhl = (Ihl i - et vl
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Since f (0 - 0) # f (0 + 0), hence lim f(x)does not exist.
x—0

(v) lim 1
x=0-0 x— | x | p
-h. As x tends to 0 then h also tends to 0. Thus
, ~h . —h 1
=lim =lim——=—-7-
|-h| h=0—h-h h—0 =2h 2

Puttingx=0-h=

lim =lim
x=0-0x—| x| h=v—=h-—

(vi) lim sin (i]
x—0 X

Consider f(0 - 0) = lim sin[l). Putting X =

X —0-0 X

0 — h. As x tends to zero then x tends to

zero. Thus,
f(0-0)=lim sin(:—lj =—lim sin[l) =-A (say).
h—0 h h—0 h

Similarly, putting x =0 +h. As x tends to zero then x tends to zero. Thus,

f(0+0)=lim sir{—l—J = lim sin(l] =A
h—0 h h—0 h
Since, f (0= 0) and f (0 + 0) are not equal. Thus, lim sin(1/ x ) does not exist.
x—0

Readers may observe that as X approaches

The graph of this function is shown below.
are not same.

from left and right the values of sin (1/x)

s —— —a i

Zero

Left and Right Limits of Piecewise Functions
In this section we shall discuss the limits of piecewise functions. It may be noted that we

have already mentioned that if left limit f(a - 0) and right limit f(a + 0) are equal L where
L is a finite number then limit of function f(x) when x approaches "a’ is also equal to L.

Example 19: Do as directed.

S : N x* -1 x<2
(i) Find lim f(x) where f(x) is defined as: f(x) =
khs Vx+7 x>2
Solution: lim f(x)=lim (x> ~1)=3 and _lint f(x)=lim(Vx+7)=3-
Thus, Iin;f'(x)=3. since lim f(x)= lim f(x)=3
L x—=2 x—2t '

Explanation: Given function is piecewise function. One of its part is defined for x <2
and the other one.is for x > 2. While evaluating the left limit at x = 2, we take that part of

function which is on the left of 2. Similarly, when valuating the right limit at x = 2. we

take that part of function which is on the right of 2

.

(ii) Find limf(x) where f(x) is defined as: f(x) = X x<l1
x—| X] . >I
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Solution: Since function is piecewise function, hence to evaluate the required limit, we
shall consider left and right hand limits at x = 1.

Now, lim f(x)=lirr=(x2)=l.Also lim f(x):lin}(x3)=lSince both left and right limits
x—=1-0 X— x—1+0 X=

atx = 1 are equal, we conclude that limf (x)=1
x=

2x +1 x <~

ol

ax- x>-1
Solution: Since function is piecewise function, hence to evaluate the required limit, we
shall consider left and right hand limits at x = -1.

Now, lim f(x)zliml(x+2):I.Also limnf(x)zlim (ax*)=a

x—==|-0 X —— X ==+ x—=-1

Since limf(x) exists hence. both left and right limits at x = -1 are equal.
x—=]

(iii) Finda" if ]imlf(x)cxisls where, f(x) is defined as : f(x) ={

This gives a = |[.
o G R s no o : cosx x<0
(vi) Find'a® if lim f(x)exists where, f(x) is defined as - f(x)=
x——) ' a+x x>0
Solution: Since function is two-valued function, hence to evaluate the required limit, we
shall consider left and right hand limits at x = -1_

Now, lim f(x)=lim cosx=1. Also lim f(x)=lim(a+x)=a
x—0-0 X —) x—0+0 x—)

Since limf(x) exists hence, both left and rightlimits at x = 0 are equal. This givesa=1.
X —l

Applications of Limits

Example 19: Suppose - that profit from the sale of x units of microchips is
300 . J i s

P(x) = 2000 - — dollars for x > 1. What will be the maximum profit if the sale

X

increases indefinitely?

Solution: Clearly, we are asked to find the limit T ¥ = 2000

of P(x) as x tends to infinity. Now . LoEAIERL

limP(x) = lim (30()0 - EJ =2000- [ch; lim 220 _ u} e A
X

X —)oo X —300 X—peo ¥

Interpretation: I —
No matter how big sale of microchips is made, "1
the profit will never exceed $2000. The graph of above function is depicted in the
adjacent figure. -

Example 20: The height of tree grows according to law h(t) = (9.5t - 2)/(t + 1) where
h is in feet and t is the time in years. Find the height of the tree after (a) one year
(b) 2 years (c) 10 years and (d) 30 years. What will be maximum height of the tree as
the time passes indefinitely? ‘

Solution: (a) Putt=1, we get: h=7.5/3=2.5 fect
(b) Putt =2, we gel: h=17/3 =5.67 feet
(c) Putt =10, we get: h=93/11 =845
(d) Put t = 30, we get : h=82

(e) If t increases indefinitely, that as t tends to o, we get

: 9.51-2) . (19.5t-2/1)) (9.5-0)"
limh(t)=hm| —=|=lim = =905
Jimhiy) —( t+1 J H,..[ (+1/1) ] ( 1+0 J
This means that maximum height of the tree will reach 9.5 feet.
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Example 21: The number of degrees “d" in each interior angle of a regular polygon
of “n’ sides is d = (180n — 360)/n. Find the measure of interior angle of regular
hexagon. Find the limit, that is; the number of degree toward which the angles tend
as n gets larger and larger.

Solution: We have solved this problem in chapter one where we showed that for an
equilateral triangle above formula gives d = 60°, for square (n = 4), d = 90° and for
n = 5 (Regular pentagon) ,d = 108° etc. Putting n = 6, we gel

d = [180(6) - 360)/6 = 120°

Now as n gets larger and larger means n tends towards infinity, that is; if “'n" gets larger
and larger, we get:

. 180360/
fimy gl 2 limi___——ﬂ= lim (180—0) =180

n—pos n—jee n y N n n—eo
This shows that the number of degrees tend towards 180° as n gets larger and larger.
Example 22: A woman with a temperature of 103° F is given medicine that will
reduce her temperature. The medicine takes one hour before it begins to work, and
after that (that is, for t 21) her temperature at t hours will be
T(1)=103.7-(5.11-4.5)/t degrees
(a) What is her temperature at t = 1 hour, t =3 hours and t = 10 hours?

(b) Eventually, to what temperature is her body reduced?
Solution: (a) The temperature of the woman at t = 1 hour will be

5.1(1) =45

T(1)=103.7- =103.7-0.6=103.1 degrees

The temperature at t = 3 hours will be

. S.I(3)_4‘.5
T(3)=103.7~ -—(5)———— =103.7-3.6=100.1 degrees

Finally, the temperature att = 10 hours will be

5.1(10)-4.5
T(10)=103.7- (19)

. (10)

(b) The temperature of the woman will be reduced if t gets larger and larger, that is;

=103.7-4.65=99.05 degrees

45
5.10-4.5 ‘(5""]
{ — oo - Thus, limT(t) = |im(103.7-;—;)= 10T N . X
t t

[ t—e L —0e
=103.7 -5.1=98.6 degrees. [using lim < — 0]
n=—px ¥

This shows that as time is prolonged the temperature of the woman will reduce t0 98.6” F.
2.2 CONTINUOUS AND DISCONTINUOUS FUNCTIONS
In this section we shall discuss a very important concept of calculus known as
“Continuity”.
Definition: A function f(x) is said to be continuous at a point x = a if any one of the
following two conditions hold.

() f(a — 0) = f(a + 0) = f(a) = L, where f(a) is value of function at x = a.

@)  limf (x)=f(a) =L, L-being a finite number.

REMARK: (i) Some authors are of the opinion that if left and right limits are equal-and
finite then function is continuous. This is not true unless they both are equal to f(a)
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n f2(x) is continuous at x = g then f(a + )= f(a-0). We

Y soon yOu this. () Usually, the first definition given above is used when
the function is Piecewise function and the second one is used otherwise.

Continuous functions may be thought of as those functions whose graphs can be drawn

wu?mm lifti.ng the pencil from a Paper. Following figures show graphs of some functions
which are d‘lsconlinuous aLx = a,

T t

However, if it is given that functio
shall very soon show you this. (ii)

REMARK: First type of discontinuity is known as “Jump Discontinuity” and the

second kind of discontinuity is known as “Singularity”.
For instance, function fx)=3x+5is continuous at x = 2 because: lim f(x)=f(2)=11
x—2

Some types of functions are continuous at every real number in their domain. Limits of

such functions can always be determined by the substitution approach. Polynomial
functions are continuous at every real number. Rational functions are continuous at every
real number, except at numbers for which the denominator is zero.
. TR
Example 01: Is the function =
X+1
XZZ\ M\

Solution: Here limf(x) =lim : :I_TZ() and f(1) = 0. Since both limiting value and
x—| X=| X 4 +

f(1) are equal and finite hence, [ (x) is continuous at x=1.

continuous at x = 19

Example 02: Is the function f(x)=2>

continuous at x = -1?

X +
Solution: Since f(x) is undefined at x = -1, therefore, function f(x) is discontinuous at
X =-1. However, Iim] f(x) does exist, since
X—-
lim xz_l=lim oD+ (x=1)=-2 10
x=-1 x+1] x—-1 (x+D x—-1
The graph of the function is shown heré. 2
Since there is no point corresponding to x = -1, this

discontinuity is called a “missing point discontinuity.”
Example 03: Is the following function continuous at x = ?

f 0 x<0

X)=

(%) X x>0

Solution: If the function has a point where it is discontinuous, 0

the trouble spot will be at x = (). Since the function is defined differently for x <0 and x > 0, we
must evaluate limits approaching zero from the left and from the right to test for continuity. Now,
f(0)=0and lim f(x)= lim (0)=0, Iim+f(x): lim+(x)=0 = ,}‘in?)f(x)zo
x—0*t x—=0" x =0 x =) — -
Hence, given function is continuous at x = 0. This is shown in the above figure.
Example 04: Discuss the continuity of f defined by
Xx—4 -l<x<2
f(x)
: x’~6 2 x 5
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Solution: Here, f(2) =2 -4 =-2. Also
lim f (x) = lim (x -4)=-2, lim f(x)= xl_igl(xz -6)=-2-

x—=2" x—2

x—=2" .

Since f(2 - 0) = f(2 + 0) = f(2) = -2, hence gi

Example 05: Examine the continuity the fo
1

xsin(—J x#0
f(x)= X
0 x=0

Solution: Given that f(0) = 0. Moreover,

()= g )| im0 s 1] -4 =0

Thus limf (x)="f(0)=0.Hence given function is continuous at x = 0.
x—0

REMARK: (i) sin(1/x) is bounded

ven function is continuous al X = 2
llowing function at x = 0

function and its value lics between —1 and +1.

Example 06: Examine the continuity of following function at x = 0.
I/x
e =1
x#0
0 x=0

Solution: Here f(0) =0 (Given). Also

I x 1/x & Ix
: (e =) ]S % At e
limf(x)=lim LI =lim| =———— (= lim ————LT—:
x 30 e'”(l+c"") —0{ 1+1¢ ")

x—0 W |
Applying the limit, we get
. 1-0 &alk 1 ]
limf(x)=—7 =L Note: lime”™ — e and hm—'——->l)|
x—0 l+0 x—0 x—0 € z J
Since limf (x) # f(0), hence given function is discontinuous at x = 0.
x =l

Example 07: Examine the continuity of following function at x = 0.
sin 5x

f(x) =1 sin3x
5/3 x=0

Solution: Here f(0) = 3/5 (Given). Also .

limf[x)=lim(5m5xJ=Iim Smsmxi’ix 3x
=0 5x Ix  sin3x
] Ié
3

x#0

sin 3x

x—0) x=0
~ (sin5x) .. X L 5
= lim x lim — xlim—=1.1.-=—
x—0 5x J x—0 8in 3X x—0 3x 3

Since limf(x)=f (0) . hence given function is continuous at x = 0.
x —()
Example 08: Examine the continuity of following function at x = (.
I/x
1+ x xz0
] x=0
Solution: Here f(0) = | (Given). Also
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lim () < 1: rx _ | 111 1 1(1 1
xLD (x) lnm)(H-x) 1ﬂ[l+;'x+5; —=1|x24—= ———lJ(;——2)xJ+‘..

X

) 3rx\x
= lim 1+l.l+-l—(lmx)x_x2+-l_-(—l;.x_)_(]_ﬂx3+
xﬂOL 2! X2 3! x3

2 | 1-x)(1-2x
| =P_rr(1) l+l+5—!(l—x)+£———)-3(!———)+..}=[l+l+—|—'-+—]—'+..]=e "

Since ,l‘ig(l)f(x) #£(0), hence given function is not continuous at x = 0,

Example 09: Is function f (x)= ‘_xJ continuous at x = 1.5?

Solution: (1) f(1.5) = 15 =1() lim f(x)= Lim x =], lim f(x)= lim x =1
x5 x—=l.5 x—l.5" x—i.st

Since  lim f(x)= lim f(x)=1 - lim f(x)=1- Also, lim f(x)=f(1.5)=1.
x—1.5

x—] 57 x=1 5% x—1.5

Hence, f (x) is continuous at x = 1.5!

REMARK: The bracket function (the least integer function) is continuous at all real
numbers except the points where x is an integer.

Example 10: Is the following function continuous?

x+4 -b<x <=2
f(x)=1-x -2<x<2
x—4 2<x<4d

Solution: You may observe that given function is piecewise function. Here, it is not
given that where the continuities are to be determined. In such problems, points of
discontinuities may occur at the intermediate points of the entire interval,

Here the entire interval (-6, 4) is divided in three parts (-6, -2), [-2, 2) and, (2, 4). This 1s
depicted in the following figure. Hence, points of discontinuities may occur at x = -2 and
X=2.

O O® —O— -0
-6 -2 2 4
REMARK: The hollow circle indicates beginning/end of open interval and thick circle
indicates beginning/end closed interval.
Let us now examine where the function is continuous and where it is discontinuous.
Continuity at x = -2
Consider, f(=2-0)= lim f(x)= limz(x +4)=2
x—-2" s
And f(-2+0)= lim+ f(x)= Iimz(—x) =2 Also f(-2) = = (=2) =2
o T ) X ==
Since (-2 - 0) = (-2 + 0) = f(-2) = 2, hence give function is continuous atx = -2,
Continuity at x = 2
~Consider, f(2-0) = lim f(x) = lim (-x) = -2

2k 2
x—2 X¥E

And f(2+0)= Iim+ f(x)= lin;(x—4)=—2 .

x—2 X
You may observe that left and right limits are equal but f(2) is not defined. Thus given
function is not continuous at x = 2.
Example 11: If the following function is continuous find the values of unknowns "a'
and 'b’,
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§= * x <~1 #
f(x)=<ax+b -1gx<«lI
: x}+2 xzl )
Solution: The intermediate points are _1 and +1. Now let us consider:
f(-1-0)= lim f(x)= lim (x’}=-1.
x— -1~ x—-1
And f(-1+0)= lim f(x)= Iiml(ax +b)=-a+b
x—-1 x=-

Now consider, f(1-0)= lim f(x) = lirr}(ax-+ b)=a+b

) x—" x= ‘
And £(1+0)= lim f(x)= 1inr}(x2 +2)=3

x—1

It is given that function is continuous, hence
f(-1-0)=f(-1+0) &> -.]l=-a+b

Also, f(1-0)=1f(1+0) 2>a+b=3

Solving these equations simultaneously, we get: a = 2andb=1.

Thus for a =2 and b = lgiven function is continuous.

e —& Definition of Continuity ‘

A function f(x) is said to be continuous at

number & > Osuch that [f(x)-f(a)l<€ whenever | x —al < 0.

We shall use the above definition of continuity o see how it 1s applied to see whether or

nol a given' function is continuous or not.

Example 12: Using € —& definition, show that f(x)

x = a if for given €>0there exists a real

= 2 x — 3 is continuous at

x=4.
Solution: Here f(x) = 2x — 3. thus f(a) = 1(4) = 8-3=>5 Now
Il'(x}—f(a)l:l’lx—.'ﬁ-S|=I'2x-8I=2|x-4I
Now let | X ab= hx =4 | <O
This implies thal
If(x)—l'(a)lzlf(x)-f(-i)I:2Ix—4|-—-2 § < e.wheree =2 0.
This proves that given function is conlinuous at X = 4.
Example 13: Use € —0 definition, to show that f(x) = x 2 _ 3 is continuous at
x=2 .
Solution: Here f(x) = X 2_3 thus f(a)=1(2)=4 - 3= 1. Now
f(x) —f(a)1=1x*-3-1 l=1x2-41=1(x-2)(x+2)1=1x-21 Ix+2|
Now let Ix—al=1x=-21<0 i
This implies that: | f(x) - f(a) | = 1 f(x) - f()l=Ix-2x+2l= olx +2l< €, |
where € = 8! x + 2I. This proves that given function is continuous at x = 2.
Applications of Continuity
In this section we shall present the applications of limit and continuity that will help the
readers to understand the areas where the concepls of continuity are used.
/f’mmple {4: An ant trap is used to eliminate an ant colony. The number of ants
+../ living t hours after the trap is put out is given by
N(t):{zmo St 0<t<?24

2880-401 24<1<72

(a) How many ants were originally present in the colony?
. (b) How many ants are left aftér 72 hours?
(c) Is the elimination of ants continuous at t = 24 hours? Explain.
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Solution: (a) The number of ants originally present in the colony was

N(0) = 2040 - 5(0) = 2040
(b) The number of ants left after 72 hours is

N(72)=2880-2880=0
(¢) The function will be continuous at t = 24 if

lim N(t)= lim N(t)=N(24)

=247
Now, lim N(t)= lim (2040—5[)=2040—120= 1920
(=24~ =24~
lim N(I) = lim [2880—40[) =2880-960 =1920
=24 1247
Also,

N(24) = 2880 - 40(24) = 2880 - 960 = 1920

Now N(24 - 0) = N(24 + 0) = N(24) = 1920. This implies that elimination of ants is
continuous at t = 24 hours.

Example 15: The flow of current is given as under:

2 +1 0<t<l
I(t) =42t l<t<?2
i 2<t<4

where t is the time in seconds. Is the current flow continuous at t = 1, t = 22 What
will be the value of current at t=0 and t = 3.5 and t = 4 seconds?
Solution: Consider:  1(1-0) = lim I(t)= Iim(l: + I) =2
t=l-0 1=l
Also [(1+0)= hm 1(t)=lim(2t)=2
t=1+0 1=l
Since left and right limits at t = | are equ

al but I(1) is not defined. Hence flow of current
cannot be continuous at t = | sec,

Now consider: [(2-0)= lm I(t)=lim(2t)=4
1—=2-0 =2
Also 1(2+0)= 1im I(t)=lim(¢*) =4
(=240 t—2
And 12)=2>=4
Since [2Q-0)=1(2+0)= 1(2) = 4, hence flow of current is continuous att = 2 seconds.
Now att=0,1(0) = 0+ I = | Ampere. Att=35,1= (3.5 = 12.25 A, Finally, since

t = 4 does not come in the domain of curtent function, hence we can not say any thing
about the flow of current when time t = 4 sec. In other words. at t = 4 seconds the current
value is not defined.

Example 16: A colony of bacteria is introduced to a

growth inhibiting environment
and grows at time t according to the formula:

L+8 -6<t<=-2
B(t)=<t* +2 ~Jg 123
5t 2<t<6

where B is in thousands. The negative sign shows the time before colony of baeteria
was seen. [For instance B(-6) means number of bacteria in the colony six hours ago

were -6 + 8 = 2 thousands] . Is the growth of bacteria continuous at t = -2 and t = 2°?
Solution: The given function will be continuous at t = 2, if

(0=t 5(0)=5(-2)
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Now lim B(t)=l_l,i_r;?_o(t+4)=6 and t—l)i-nZlﬂB([):[.!,i_T+D

t—-2-0
Since, B(-2 - 0) = B(-2 + 0) = B(-2) = 6. Hence, Bacteria growth i
= lim (5t)=10

¢ continuous at t = -2

(Two hours before now)
Also, |2r2n‘uB'(t)= lim (t+4)=6 and 1212110]3(1) a1

1=2-0
Since, left and right limits are not equal at t = 2 hence, Bacteria growth is no

at t = 2 (Two hours after now).

{ continuous

WORKSHEET 02
1. Evaluate the following limits:
1- - - - : . 3J—-x
(@) lim — 23" ) lim — l @ Tim: LexI-l gy tim
x—=x? +x° -9 x—1+0 (XZ -1 x—0 I x1 x—3-0] x =31

2. Suppose the cost C of removing p percent of the particulate pollution from the
7300 p__ Find lim C(p)-

smokestacks of an industry plant is given by: c(p) =
100 - p R

_The monthly charge (in dollars) for x kilowatt hours (KWH) of electricity used by a
commercial customer is given by the following function:
752+0.1079x, 0<x<5
19.22+0.1079x, S5<xs750
C(x) _ X X
20.795 + 0.1058x, 750 < x < 1500

131,345+ 0.0321x, - x > 1500

Find (a) Find Iirng(x) and (b) imC(x).

x—15 ) x—3

4. The monthly charge for waterin a small town is given by:

18, ~0<x<20
f(x)= -

18+0.1(x-20),  x>20

Find lim f(x). .

x—20

) 1400x — 2(
- 5. The profit from the sale of x units is: P(x) = 1400x =20 dollars for x > 1
X

What is the limit of profit as the quantity sold increases without bound?
_-6. The amount of a drug that remains in a person’s bloodstream t hours after being

injected is given by: f(t) = 0.15¢/(1 + ). Find limf (x) if it exists. Explain the result you

obtain.
7. Function f(x) is defined as:
(x*-27)
f(x)=4 " (x-3) X #3
9/2 % &5

Is f (x) continuous at x = 3?
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8. Is the following function continuous?
x+2 O<x<l*
f(x)=4{x I<x<2
X+5 2<x<3
<" 9. Examine the continuity of following function at x = 0,
W/x i
e sin 7x
N 20 — #0
(@) F(x)={ e 4] X (b) £(x) =1 sin6x *
O x=0 . 6/7 x=0
1+4x)"* x20
(0 f(x)= ( ) : ;
e x=0

10. Use € -9 definition, show that fix)=x-3is continuous at x = 4.

I1.In 1986, Tax Reform Act created the following tax schedule for a single filers in
1988.

Tax Rate Tax Income
15% 0-S$17850
28% Above $17850
This means that the tax T is a function of income x as follows:
0.15x, 0<x<1783%0
T(x) =

 2671.504028(x~17850), x > 17850
Is T(x) continuous?

12. Residential customers in‘a small town have their monthly charge f(x) for x hundred
gallons of water given by:

18, 0<x<20
f(x): <
18+0.1(x~20), x> 20
Is f(x) continuous?

13. Suppose that cost C of removing p percent of particulate pollution from the exhaust

gases at an industrial site is given by: C(p) = 8100 p/(100 - p).Describe any discontinuity
for C (p).

}4. The monthly charge (in dollars) for x kilowatt hours (KWH) of electricity used by a
commercial customer is given by the following function:

7.52+0.1079x, 0<sx<s
19.22+0.1079x, 5<x <750
20.795+0.1058x, 750 < x ‘SISO().
131.345 +0,0321x, x > 1500

a. What will be the charges for using the 5 and 750 KWH of electricity?
b. Is the function continuous at x = 5 and x = 15--7
\A15. Suppose the size of a population of bacteria in time t is given by:

t, when 0 <1< 1/2
P(t)= 1, when t=1/2
1-t,  when l/2<t<l

C(x):
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a. How many bacteria were originally present?
b Is the function continuous at t = 1/2 hours?
\.~~16. The amount of a drug that remains in a person’s
injected is given by:

bloodstream t hours after being

t+2, when0<t <l
£()=t when 1<t <2
t+5, when 2<t <3

a. What was the amount of drug at the beginning?
b. Is the function continuous at t = 2 and t = 3 hours?
17. Suppose the cost of obtaining water that contains p% impurities is given by:

120,000
_1200, if 0<p<I0
c(p) = p :
10800, if 10<p<I2

a. What is the cost of obtaining water that contains 12% impurities?
b. What is the cost of obtaining water that contains 5% impurities?
c. Is the function continuous at p = 10%?

\V/-IS. The velocity V(t) m/sec of a particle is given as:

t, when t €0
V()= t, when 0<t < 4.
2t +4, when t > 4

a. What was the velocity at the beginning?
b. Is the velocity of the particle continuous att = Oandt=4?
19. Suppose that the cost to remove x percent of the pollutants in a lake is given by:

> 900, 000
C(") = 100-x%
11250, if x>20

if 0<x<20

a. What is the cost to remove 10% of the pollutants from the lake?
b. Is the function continuous at x = 20%?
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CHAPTER
THREE

DERIVATIVES

3.1 WHATIS CALCULUS
Calculus is the mathematics of moti
where forces are at work producing
apply. This was true in the beginnings
Calculus was first invented to meet th
and seventeenth centuries, needs that
main branches of calculus called Diffe
Differential calculus deals with the
people to define slopes of curves, t
bodies, to find firing angles that wo
the times when planets would be clo
with the problems of determining a

acceleration, calculus is the right mathematics to
of the subject and it is true today.

¢ mathematical needs of the scientists of sixteenth
were mainly mechanical in nature. There are two
rential Calculus and Integral Calculus.

problem of calculating rates of change. It enabled
o calculate velocities and accelerations of moving
uld give cannons their greatest range, and to predict-
sest together or farthest apart. Integral calculus deals

function from information about its rate of change. It
enables to calculate the future location of a body from its présent position and knowledge

of the forces acting on it, to find the areas of irregular regions in the plane, to measure the
lengths of curves, and to find the volumes and masses of arbitrary solids.
Today, applications of calculus _and its extensions in mathematical analysis are far
reaching indeed, and the physicists, mathematicians and astronomers who first invented
the subject would surely be amazed and delighted, as we hope you will be, to see what a
large number of problems it solves and what a range of fields now use it in the
mathematical models that bring understanding about the universe and the world around
us.
Calculus is widely employed in physical, biological and social sciences. It is used, for
example, in the physical sciences to study the speed of a falling body, the rates of change
in a chemical reaction, or the rate of decay of a radioactive material. In biological
sciences, a problem such as rate of growth of a colony of bacteria as a function of time is
easily solved using calculus. In social sciences, calculus is widely used in the study of
Statistics and Probability and optimization problems.
Calculus can be applied to many problems involving the notion of extreme v
as the fastest, the most, the slowest or the least. Th
may be described as values for which a certain rate of change (increase or decrease) is
zero. By using calculus it is possible to determine how high a projectile will go by
finding the point at which its change of altitude with respect to time, that is, its velqcity,
is equal to zero.
The invention of calculus had a greal impact on technology as well as on the
development of mathematics. Years later, applications of ca]culu§ were fo
of non-engineering areas, including business and economics,
sociology and psychology. Calculus can be used to:

» Determine the average speed at which blood flows through an artery,

> Select the most economical dimensions for packaging.

» Calculate how high a projectile will travel.

» Find the production level that will maximize a company’s profit.
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Contributions of Mathematicians to Calculus

The Englishman Isaac Newton (1642-1727) and the German Gottfried Wilhelm
Leibniz (1646-1716) are the mathematicians credited with inventing calculus. They
worked independently of each other. Newton invented calculus in 1665 but took more
than 20 years to publish his results hence Leibniz’s development of calculus was
published first. Furthermore, Leibniz’s notation was considered superior 1o Newton’s
notation, and it is still used today.

Sir Isaac Newton n Gottfried Wilhelm Leibniz

How to Learn Calculus

Learning calculus is not the same as learning arithmetic, algebra and gcometry. In these
subjects, you learn primarily how to calculate with numbers, how to simplify algebraic
expressions and calculate with variables and how to reason about the points and lines and
figures in the plane. Calculus involves those techniques and skills but develops others as
well, with greater precision and a deeper level. Calculus introduces so many new
concepts and computational operations, in fact; that you will no longer be able to learn
everything you need in class. You-will have to learn a fair amount on your own by
working with other students.

» Read the text: You will be able to learn all meanings and connections you need
just by attempting the exercises. You will need to read relevant passages in the
book and work through examples step-by-step. Speed-reading will not work here.
You are reading and searching for detail in a step-by-step logical fashion. This
kind of reading, required by any deep and technical content, takes attention,
patience and practice.

~ Do the given work in time, keeping the following principles in mind:

»  Sketch diagrams whenever possible.

= Write your solutions in a connected step-by-step logical fashion, as
if you were explaining to someone else.

« Think about why each exercise is there? Why was it assigned?
How it is related to the other assigned exercises?

» Use your calculator and computer whenever possible: Graphs provide insight
and visual representations of important concepts and relationships.
» Try to write your own: Write short descriptions of the key points each time you
complete a section of the text. If you succeed, you probably understand the
) material. If you do not, you will know where there is a gap in your understanding.
3.2 DERIVATIVES _
Before proceeding to a formal definition of derivative, consider some background
information on the nature of derivative. Simply stated, the derivative is a rate of change.
Three examples are given to offer some preliminary insight into thenotion of rate of
change:
» Consider an outbreak of flu. A function specifies the number of people sick due
to flu at any particular time. The derivative of the function indicates the rate at
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which illness due to flu is spreading at any particular time.

» Suppose that a function gives the average cost per unit of producing x units. The
fierivalive of the function gives information about when the average cost per unit

1s increasing and when it is decreasing.

A function may describe the motion of a rocket, giving the distance traveled for

any time t. The derivative of this function is the rate of change of distance with

respect to time—the velocity. Using the derivative, we can determine the velocity
at any instant desired.

Derivatives are also used to fi

nd the slope of a tangent line to curve y = f(x) at any point.
For example, what would be

the slope of the tangent line to the curve y = x2 + ] at x = 29
As mentioned abowue that major techniques of CALCULUS are Differentiation and
Integration or anti-derivative. The part of calculus that is associated with differentiation is
called Differential Calculus and the part of calculus that involves integration is known
as Integral Calculus. The main objectives of differential calculus are to establish the
measure  of the changes in a particular function with mathematical accuracy.

“Differentiation is a process of finding the rate at which one variable quantity changes
with respect to another.

Increment of a Function

Literally the word increment means an increcase; but in MATHEMATICS increment
_means small change in the value of a variable. Increment of a variable may be positive or
negative. The increment in the variable x is denoted by Ax or 8x or h. Thus,

AX = Iincrement in x Ay =increment in y
Procedure to Find the Derivative of a Function
Let y be a function of an independent variable x, that is, let

y = ftx) (N

Let there be an increment /change AX in x and the corresponding change in y be Ay.
Thus equation (1) becomes;,

}'+A}"=f'(x+Ax) (2)

Subtract (1) from (2), we get: Ay =Ff(x+Ax)=f(x) 3)
Ay [(x+Ax)-=1(x

Dividing (3) by Ax to get the quotient: Zi_: ( A,\') (x) @

This ratio is called the incremental ratio OR the average rate of change of f(x) over the
interval, [x, x + Ax ]. Now taking limit AX to zero, we obtain:
[(x+Ax)-I(x
Iimﬂ=lim ( )=(x) : (5)
Ax—0 AX  Ax—0 Ax

This limit, when it exists, is denoted by f'(x) and_ is called the “Derivative” or
/“Diffcrenlial Coefficient” of y = f(x) with respect to x. This is also called the

“Instantaneous Rate of Change” or “Slope of the Curve” y = f(x) AL, The-me'thog
described above for finding the derivative of the'funFllon f(x) is f"?”ef First principle
or “ab-initio” method. It is also known as derivative by definition”. Thus, (5) can be
. . Ay . T(x+48x)-f(x)
s e f'(x)= lim — = lim_
writlen as: Ax=0 AX  Ax—=0 Ax
Other symbols used for the derivative “".y.: f(x) are: y Dy dy / dx.
REMARK: The notation dy/dx is the originally l?y Le:bnl.z. I
Example 01: Find the derivatives of t!llc following functions by definition.
(i) y = X (i)y=1Ux (i) y=x
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Solution: (i) Given y = x. Let Ax be the change in x and Ay the corresponding change
in y. Then, :
y+ Ay=x+ Ax D Ay=x+ Ax-y=X+ AX-X 2> Ay=Ax
Dividing both sides by Ax , we get: gl =1
X
Taking the limit Ax — 0.'to obtain: lim —=1.
Ax—0 Ax
Since the limit exists (finite), hence, dy/dx =1
1

] |
ii) We h =— 9 + Ay = - Ay=—"—""7"
(1) WEihave ¥ X ¥s (x+Ax) Y3 (x+.ﬁx) 4

| . | x—(X + Ax —AX
(x+Ax) X x(x+Ax) x(x+Ax)
Dividing both sides by AX and taking the limit Ax — 0, we get
a\x—’UAX Ax—0 x(x -}-Ax) xz dx I

(iii) Given that y = x"

-)y+Ay=(x+Ax)" D Ay=(x+Ax)" -y

-1 5 >
> Ay:x"+nx“"&x+f—(:' )x""' (Ax)2+...+ (Ax) =x"

.

100 ot () 4k (88)

=nx""Ax +

Dividing both sides by Ax and taking the limitAx — 0, to obtain

-1 s
;\x[ux"#l + HA(—I? & )x"'zAx+...+ (Ax) !J

Qe - —
AX

) hence,dy / dx = nx"™!
y=x"2 dy/dx= nx""

=nx""! +0+..+0

ax—0 AX Ax —()

Since the limit exists (finite

Thus if:
One Sided Derivative
Recall that the function y = f(x) is said to be “Derivable”
limit hm oy = lim M—f—@
- Av—0 Ax a0 AX

1at a function 1s derivable if the on

or “Differentiable’ at X if the

exislts.

e — sided limits

Equivalently, we say th
f(x+h)—f(x f(x+h)-f(x
lim ( —)—————( )and lim ————————'( ]) ( )
h—0" )|

h—0" h
espectively denoted by

Ax). If these limits exist, they are r
that is;

and Rf’(x) exist but are not equal,
and and right hand

exist and are equal. (Note: h =
Lt"(x) -and Rf’(x)-If Lf"(x)
Lf’(x)# Rf’(x), we say that the function f(x)
den\f:llives but is not derivable or differentiable.
Derivative at a Point

It may be noted that if th ivati i i
. é e derivative of f(x) is required at some oint sa
a€ Dom(f) the derivative is denoled by 0 | P d
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f'(a) or dy|

dx x=a

f(a+h)-f(a
Thus by definition, f'(a):lim (a ) ()

_ h=0 h
Writing a + h = x in the above equation, we have

f(x)-f
f'(a)zlimﬂ-—(-a—), since x > a as h—0-
x—>a X —a

This is another way to represent the derivative of f(x) at x = a.
For instance, derivative of y = x* at x = 3 may be found by using ab-initio method as:

f'(3)= Iimr(3+h)—f(3)=lim (3+h) - () = fig 2+ 6h +h* 9
h

h—0 h—0 h h—0 h
._h(6+h)
"R am(6+h)=6

REMARK: If a function f(x) is differentiable, it must be continuous. But the converse is
not true, that is, if a function is continuous it may not be differentiable.
We provide an example that will make this idea clear to readers.

Example 02: Le_t f(x) =1 x | from R to R. Discuss the continuity and differentiability
of fat x = 0.

Solution: Continuity at x = 0:
Here, f(0) =101 = 0. Also, *

lim f(x)= lim x| = lim (-x)=0 and lim f(x)= lim x| = lim (x)=0

o x—0" -0 x—0?

=07 x—0"
Since, lim f(x)=lim f(x) = limif(x):() ‘
x-—=0" x—0" x5 A
Thus, limf (x)=f(0)=0 y = f(x) = Ixl
x =)

Hence, f(x) =1 x | is continuous at x = 0.
Differentiability at x = 0:
By definition,

v

f -f(a
f’(a): ]il'n M
X—a

X =i

= Lf (a) =Rf (a)

Since x =0, we have

LE'(0)= tim TVTIO@) =0 L (x)

= lim (;I)z -1,

o0~ X—= x—0- X —=0" X x—0"
f —-f (0 x|—0
Rf(0)= lim M: lim M—= lim (—x)= lim (1)=+1-
x—0t X— x=0t X x—=0t X x—o0t

Since,Lf'(O):& Rf’([)), therefore, f(x) = Ix| is not differentiable at x = 0 although it is
continuous there at.

Example 03: Let f(x)={ 0=*<!

X: : Le X)=

SR 2x-1 l<x<2

Discuss the continuity and differentiability of f at x = 1.
Solution: Continuity at x = 1:

Here, f(1) = 1. Also,

v
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(™) = 12:‘11 (x)= lim (x)=1 and () lim f(x)= lim (2x-1)=1
Since, ,}l..r?‘ f(x)= En_r’rll+ f(x)= 1‘12} f (x) — 1. Hence, f(x) is continuous at X = l.
Differentiability at x = 1:

By definition, f'(a) = Li_rgﬁ%)———z—(ﬂ. Since x = |, we have

f(x)—f(l') o

Lf’(1) = lim ———— = lim = lim (1)=1
x—l~ b o col” X—=1  x=1”
F(x)-f(I" 2x - 1) (1 2x —2 2(x -1
Rf’(l)= lim ( ) ( )= lim ————————_( X ) ( ): lim ( - ): lim ,___—-( )=2
S ot x—l ot (x—1 S (x—1)

Since, Lf'(1)# RE’(1), therefore, f(x) is not differentiable at x = L.
Example 04: Find the values of a and b so that the function f is continuous and
differentiable at x = 1 where

3
f(x):{x x <l
ax+b X 21

Solution: Continuity atx = I:

Here. f(1) =a(l) +b= a+b. Also

f(1-) = lim f(x) = imx*) =1, f(+) = Jimf(x)= lim fax +b)=a+b
o~ x—l” X1t x—=17

For a function to be continuous, we imuslt have

f(1 =0)=1f(1+0) > a+b=1 (1)
Differentiability at x = 1: :
; . fx)—t N\ ¥ RsP L (x-1 x> +x+1 . 5
Lf'(H=1lim =T jim = lim E——)—(-———‘-(——l: lim (x“+x+l)=3.
x—=1 X'—l .\'—rl'_l X—l \——H_I X'—l (—4_1 ’
; Cfeo=f(rY . (ax+b)-(a+b) —a) . alx-—
Rf'(H)=1lim GOt ) _ 1m( )~ )=l\n1 (ax q)zhm it
xit x—1 x——le x—1 x->1+l x—1 x=tt! (7("1)
For a function to be derivable, we must have: a=3
Substituting it into (1), we get. 3+b=1=>b=-2

Hence, fora=3and b= -2. the given function is continuous as well as derivable.
Geometrical Meaning of Derivative
Let f(x) be a differentiable function given by the equation y = f (X). Let the graph of this
function be shown as under. Let P(x, y) and Q(x + AX, ¥ + Ay) be two distinct points on
this curve. 1{ 0 is the angle that the secant line PQ makes with the x-axis, then
Qs _(yxdy)—y £ )
PS (y+Ax)—X Ax
This can also be expressed as
f(x+Aax)-f(x) _
tanB8=m_ = —_._-r——-—r——m = [m,, means the slope of the secant line.]
Thus, m_. = Ay / Ax, slope of the secant line APQ- As Ax gets smaller. the secant line

tan ©

comes closer and to closer to tangent line at P. As Ax approaches zero, the sccant line

approaches the tangent line. This means that the slope of the tangent linc is the limit of

the slope of the secant linc as AX approaches zero. Hence taking limit Ax—0, equation (1)
, 32
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becomes:

: 4
(l)l—l:}' mg. =(ql!i_r’r})—:%:%l'-'*ml._m = :i f(x)
Thus, derivative of the function f at the point P
fepresents the slope of (he tangent line to the
curve y = f(x) at p.

of the line.

RS R (PG, i,

T 0] A « M Ax
Thus the slope is the rate of change of y with respect to x.

Slope(m) = <hange in y- coordinate _y, -y, _ 4y

‘

2
change in x- coordinate X, —-X, Ax
Here (x,, Y1) and (x,, ¥2) are the coordinates of the
of a line is a number that specifies the change
going from point to point on the line. For arfy pa
entire line. For €xample, y = f(x) = 3x + 2 has t
units for €very unit increase in x. Let ys see this:
X: -2 -1 0 | 2
y: -4 -1 2 . 8
Now take any two values of x and the corresponding values of Y. 8ay x = -1 and 1. The
corresponding values of y are -1 and 5. By definition:

Slope(m) :.change .in y- coord?nate Y- _ 4y _3—=1 _
change in x- coordinate X=Xy AX  1—(=]
Now let us take other two values of x say x = ] 3
5 and 8. Using the formula, we get

points P and Q respectively. The slope
In y compared with the change in x in
rticular line, the slope is constant for the
he slope +3 because y increases by three

53
2

nd 2. The corresponding values of y are

S!opc(m) =Y27% _8-5 =3
X =%,  2-1
This is same as before. Thus no matter what two values of x and the corresponding values
of y are considered, the slope of a given line always remains constant.
But what happens when the function under consideration is not
linear? In order to consider the rate of change in such instances,

A

we might choose to extend the notion of slope to curves other than (1,1 :
straight lines. We have already said that slope of curve is the slope ~
of tangent line at a particular point P. /

121
For example, consider y = x?, then Y =2x. Atx =1,y = 2. Now the slope of the tangent

to the curve y = x* at (1, 1) is

anp=PP__1 _,
tan¢ base 1/2

We observe that both results are same.

Exzmplc 0S: Let f(x) = x’ - 5x” + 7. Find 1 (1) and f (2). For what value of x the slope of
this curve is zero? . ) _ N

Solution: Given that f*(x) = x* - 5x* + 7. lefcrcntlallrlg w.r.l\x, we get .
??f:;l:r;xz - ?Ox. Thus (1) =3.1 - 10(1) = -7. Similarly, f*(2) =3.2% - 10(2) = -8. Now if the
slope of the curve is zero, we have:
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3x2 - 10x =0 > x(3x - 10)=0 < x =0and x = 10/3.
hysical Meaning of Derivative
problems of rate of change of

At the beginning of the chapter, we mentioned some _ of ¢!
different quantities with respect to time. This rate of change with respect to time 15 known
pplications of derivatives where the rate of change

as the derivative. There are enormous a : ¢
more detail. Consider 2 particle moving along a

is used. Let us elaborate this in some _ .
straight line. At any instant , let s be its distance from a fixed point ‘O° on the line.
| S I

I

P
rite as s = f (t). During the interval

Then the distance s is a function of time t, which we w
[t t2], it travels a distance f (t2) - f (t;). The ratio

[f (t)-f (4 )]’(tz -1)
he interval [t;, ta]. Now the particle may be moving faster
others. Given any point l, the velocity at tp can be
approximatcd by the average velocity in a small interval containing to. Then,

f(t)-r(t
f'(ty) = lim £()=1()

=1 t—1t,

gives the average speed during t
at some point and slower al

is called the “instantaneous velocity” at to, or the rate of change of s with respect to t at

the instant t,. Thus, velocity v at the instant t as t approaches & 18:
f(Aat+t)=f(L) ds
CENECI

A 8 @
v=lim—=lm -
Al—=0 At A0 At dt
The rate of change of velocity is known as acceleration and is defined as:
CoAv (At =) dv
a=lim—=hm ( ) ()z——:f"(l)
A0 At At—0 At dt

Exam;;le 062: A body moves horizontally and its position (in feet) at time t (seconds)
is s = t* — 66> + 9t. Find the body’s acceleration at time when its velocity is zero. Also

find the acceleration whent = 3 sec.
Solution: We have s(l) = ¢ _ 6% + 9t. Differentiating with respect to t, we get

d d/; ? )

v=""s(1))=—(t" 61> +9t)=31" -12 ) -

d[(()) dl( ) 2 —12149

Again differentiating: a —-cﬁ—i(‘%l2 12t4+9)= 2
g g: _dtfdt E 2L+ )—(1l~1._ (1)

Velocity of the body will be zero if

A 1204920 —4t+3=0= P —t=31+3=0= (1-1)(t=3)=0=1=13

Thus. acceleration of the body att=1: a=6(1)-12=-6 feet/sec” -
The acceleration of the body att=31s:a = 6(3)-12=6 fUsec’.
3.3 RULES OF DERIVATIVES '
Finding the derivatives of functions by definition, that is,

F(x)= lim f(x+Ax)—f(x)

Ax =) Ax

is a lengthy and difficult procedure specially when given function involves combin ti
of algeb.raic and transcendental functions. Rules of derivatives have bccn- develc: adlon
make this process of finding the derivatives in an easy and simplé way. Proofs Fc o
may be found in any elementary calculus book. . b of these
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‘1. Constant Rule: The derivative of a constant
function is zero, that is: Ed—(c) =0, ceR- f(x)=c
X

For example, ] (5)= 0,—9—(-10) =0 and so on.

dx dx
REMARK: Readers are familiar with the fact that a constant function y = ¢ repr:scnts a
straight line paralle] to x

-axis and the slope of such straight line is zero.
)=X", where ne R, then f’(x)=nx""
d, 4/ T )
dx\/;—dx(x )—3:( —3x
LY 8 ) ey oy =
S

3. Coefficient Rule: If f(x)

2. Power Rule: If f (x ' For example,
-2 |

- 323’

and

=c-u(x), where ce R, then f'(x)=c-u’(x)-

For example: f;(ﬁpﬁ ) = 5. %(KJ ) =5(3x2 ) =15x2.

4, n Sum Rule: If f (x ) =u (x)i v(x), where u and v are functions of x, then
f'(x):u'(x)i vi(x)-
For example: —d-—(9x2 —-3x)=9—d—(x2)—3£—(x)=9(2x)—3.l =18x -3.
dx ' dx dx .-

5. The Product Rule: If f(x) = u(x) v(x) where u and v are functions of x. then:

Fx) = u(x)v'(x)+ v(x)u’(x)- For example:
d /2 yny yoayvd oo 13y d o2y /o 1 13 ) Y 9y di3
ax 07X 0P )= ) 5 o )y =
6. The Quotient Rule: If f(x) = ufx)/v(x) where u and v are d
u(x)=u(x) v'(x
of x with v(x)# 0, then f’(x):v(x) ([)( )](2 il :
v(x

Cd(xP-4x) (x+5)(2x —4)—()(2 -—4x)(l)
For example: a( J—

ifferentiable functions

X+5 (x+5)’
2x* —4x +10x - 20— x2 + 4x _x*+10x =20
B (x+5)’ (x +5)

7. The Chain Rule: The chain rule is defined in the following way:

d dy du
If y = f(u) and u = g(x) then: =¥ =% G4

dx du dx
For example if y = 2 then by using chain rule we may find its derivative as under by
i 1-x
using chain rule. & dv
: u
Let u= lj—_x then y =+u = (u )!/2 ‘Then, by chain rule; <Y = &Y 4
1-x

dx du dx

L%
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du du
1=x)(1)-(0+x)(-! 1—-x+1+X 2
a1 (=000 ) ixeitx 2o
dx dx{1-x (1-x) (1-x) (1-x)
’ - 2 1
Thus‘.qz_—_gz.fj)i-_-.!-. .l__-i. 2_—_'_,__._——-——'_"—_3}7;
dx du dx 2 VI+Xx (I—-x) ~/l+x(l—x) -
8. The General Power Rule: A direct result of the Chain Rule-is a very useful rule,
called the general power rule, that is; if Y= u", whereu is a differentiable function
of x, then %Y ! E‘l
dx dx
, 1+x
For example, if Y= ] ,then
-X
ay _df flrx| tfaea Y a(1ex)_1f1ox 2 (1-x)(1)-0+)E)
ax  dx|Vi-x | 2\ 1-x del1-x ] 2L 1+x (1_,()3
|

1(1__}1__'__1[',}’—2__,____,

2{1+x (l—;-:)2 20 1+x (l*x)2 \/l+x(l—m)3‘2
9. The Parametric Equations and Their Derivative

,d X

If y=f(t) and x = g(t) are parametric equations of acurve then: 0y B, dx

dx dv dt

For example, lety = ¢ +20—landx = t* — 5t then:

dy dy  dx ) . 3t +d

SO L (3% +4-0)(2t-0)=
( ) ( ) 21=5

dx dt_dt
of Trigonometric Functions
rive the formulae for the derivatives of tr
o Find the derivative of y = sin x by ab-initio method
Let Ax be a change in X and Ay be a corresponding change in y. so that
y+Ay = sin(x +Ax) = Ay =sin(x +AX)-y =By = sin (x +Ax)—sinx

Derivatives
igonometnc functions.

In this section We shall de

Using the formula sinu -sinv = 2cos UrY sin— L , we get
+ AX + Ax - :
Ayz?.cosx X Xsm“ s xszy“—'Zcoszx+Axsinﬁ
2 2 ) 2
4 Ay=2cos{x+éi]siné’i
2 2
Dividing both sides by Ax, we get
Ax ). Ax
2¢os| x +-— [0~ cos| x + X lsin L Ax
LA_.Y- — __:_"' _____.2._ - _(i_y _ 2 2 y sin - -
Ax Ax AX Ax = —:=c05(x+_) sz
5 s
Taking limit Ax T 0, we get 2
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SIR — sin —
d , Ax ) ..
lim ﬂ = |lim cos(x +%]—2— =:'—Z = lim cos[x+—] lim 2

x>0 AX  Ax—0 Ax dx ax—0 Ax—0 ﬂ’i
2 2
Applying the limit, we get
Ell=ccnsx><1=cosx NOTE:limﬂlﬁzl:,.
dx 8-0 0

Hence, if y = sin x then £ = cos x. That is : i(sin X ) =cos x
dx dx

REMARK: You may find the derivatives of all trigonometric functions in any

elementary book on calculus or you may seek help from your tutor to derive the
following by ab-initio method.

~

] y dy/dx y dy/dx |
’» sin x cos X cot x -cosec? x

COS X - sin X sec X sec X tan x
| tanx sec * x cosec X | -cosec xcotx |

Example 01: Find the derivatives of the following functions
sin x

(i) y =tan(2x-3)

_ _ dx H
NOTE: Dash * " * stands for derivative.
_ (1+cos x )(cos X )= (sin x)(0-sin x)

Solution: (i) dy _d ( sin x }: (14 cos x) (sinx)¥Esin x (1 + cos x) .
1+ cos x

(1 +cos>.:)2

2
(1+cosx)
d cos X +cos” x +sin? x |+ cosx 1 .
> N - > = - = [coszx+sm‘x=l:|
dx (I+cosx) (I1+cosx)” l+cosx

(ii)‘% A a‘—i—(—[lan (2x - 3)] =sec” (2x —3);;':(2:( =3)=sec®(2x - 3)(2) = 2sec? (2x -3)

Derivatives of Inverse Trigonometric F unctions
* Find the derivative of y = sin"'x ;
Solution: Given that y = sin'x < x = sin y. Differentiating both sides w. r. t y, we get:

dx —cosy-cosy:ix- = : e
dy - dx  cosy \/l—sinzy \/l-)':2

; T dy | d v ] 1
Hence, if y=sin™' x then - = or —(sin” x|)= Xz

REMARK: Students are advised to find the derivatives of temaining five inverse
trigonometric functions. The following table shows the derivatives of all inverse
trigonometric functions.

Y dy/dx y dy/dx
sin”' x I cot 7 x -

X #1 :
V1 -x? 1+ x

1
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Example 02: Find the derivative of y = cot™ [1 2. )
- X

Solution: . :
dy _d cot™! 2x =__~__l___-_fi— x []‘»IOTE:—CI—((:OVI x)= 2]
dx dx |—x2 2% 2 dx ] —x2 dx 1+ X
1+ ——
=
2 2 = 2
B ) e (o St
2 — 2
s e i W
d —(2+2x2) (l+x2) 1 -
Ei—_l+2x2+x4 To(+x? )“._ (1+xl)
p g af 2x ; 27 b 12X
Example 03: Differentiate tan — | with respect 10-510 1 =
l—x~ X7
o) N
Solution: Let y = tan™' L — Lz= AN s
| — X | £:X°
It is required to find dy/dz. Put x = tan O, we get
5 \ :
y=tan” r@—?— ="tan '(tanze) 29 =dy/do=2 (1)
l—tan~9 ) \ . )
21 2
Similarly, z =sin” ——[ﬁn—?— =sin”" u:\B =sin~' (2sinBcosB)
I+tan” 6 sec” 0
b =sin”' (sin26)=26 =dz/de=2 )
From (1) and (2), we have: d_y = 9)— dz =2+2=] '
dz do de
tanB+tan® _ 2tan®

tana+tanb
——————— = tan20=tan(0+6)=

NOTE:tan(a+b)=

|-tanatanb l—tanﬂianﬁ_]—tanzﬁ

2tan® 2sin® > :
d =237 cos? @ =2sinBcosO =sin 20

An -
sec-@ cosO

" : " 2 2
Example 04: Differentiate tan ‘( I ’;z ) with respect to cos™ {l -x> )
B [+ x?

Solution: Let y = um“'( 2x > } and 7z =c05“' [l —x? ]

I=x 1+ x32
It is required to find dy/dz. Putting x = tan 0, we get,

y l.m*l[ 2tan@ ) ldll_l (t 23) 20 ‘ dy
= l& e = (¢ an =2 BT
| —tan” 0 | =>d9 2 (1
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o 1- sin’ @ |
s B 2 , 20 in?
Similarly, z = cos™" I-tan"0 |_ - l cos” 0 ’ — cos-![ cos”0—sin@
1+tan’ @ l_|_sit126 cos’0+sin? 9

i cos? | ’
z=cos™' (cos 20)=20 = :—;— =2 (2)
From (1) and (2), ﬂzﬂ#E:Z-ﬂ:I

dz de de
- . -1 1 + X2 - 1 % -1

Example 05: Differentiate tan™' | """ | with respect to tan” x

X

JI+x2 -1

Solution: Let y = tan"[
X

] and z=tan”' x

It is required to find dy/dz. Putting x =tan @, we get,

g tan_,(\/1+tan2 0-1 ]_ tan_][sccﬁ—] J_mn_,{l—cosﬁJ

tan 6 tan sin @
——— ' G 2 7 .
=tan”' _25”1 0B =tan™' lanE =E ::,Elzl (1)
2sinB/2.cos6/2 2 2 de 2
Similarly, z=tan™' (tan8)=0 2‘?1%:1 (2)

1
From (1) and A NAT o1 | 1
dz do do 2 2

Example 06: Differentiate tan' (\/x—, ] with respect to sec™ [] 12 3 ]
' ) 1-x° X

- 1
Solution: Let y =tan™' - and z=sec”' :
. Vi-x? 1-2x

It is required to find dy/dz. Putting X =sin0, we get,

. o) .
y =tan™ __Sin® =tan”’ —Fﬂ étan"'(qne]=lan"(lan6)=9
29 cos B

VI-=sin cos”
- dy/de =1 , (1)
L -1 I hrr I -1
5 7= —_— [=S5eC = =
Similarly, z=sec [1_2Sin29] cos20 | =% (sec20)=20
= dz/de=2 (2)
dy dy dz 1
d@), L="L i+ " =13+2=0_
From (1) and (2) 4 de do >

REMAK: See the change in substitution in this example and examples 3, 4, and 5.
Derivatives of Exponential and Logarithmic Functions
In this section we shall find the derivatives of:

(1) log, x (2) log, x = logx 3)a*a>0 (4) &
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1
1.If y=log, x, (x>0, a>1) then Eli=llog“f:=
dx X xlna
o, 2
f(x+h)- : - s
proot: &Y = fim L) [() _ 108 (D) 108X "
dx h-0 h h—0 h h—0

) 4

. h 1 x h l.. h )b
= lim—1 = |=lim—=1 1+— |=—liml ol
hl—-)Oh 08,[]+x) ll—qfl)xh oga( x] xhl—»o Oga( x)

11

dy
xlog.a xIna

1 : hy| 1
e og, llm[ +x) .~ log, e

REMARKS: (i) ]im(] +£Jh =¢ (ii) log, b= log. b :i_[E-
h—0 X Inb

log, a

> d—i»(logax):%logac:

2. 1f we put a=e in () then y=logcx=>y=lnx.sothat

xlna

L
X

dy d 1 d 1
Y- (nx)= =~. [lne=1 o 9 (Ihody==log e =
d‘(nx) [nc ] dx(nx) xnch xlne

dx xlne X
3.If y=a", then d—)::a" Ina
dx
Proof: We have f(x)=y=a" By definition,
x+h X

f h)- o Xrh <&
El—)izlim (x—+— ) r(x)=limi—-—-dl—
dx h=0 h h-=0 h

h h h

3 . -1 ah —
ijl=lim a’ 2 1za"hm 2 7 |=a"Ina Note: lim a -1 =Ilna
dx h-0 h h=0| h h—0| h

3 y=a", then ﬂ:a"lna
dx

. dy
4. If f(x)= —¢*. then —==¢"
( ) y dx
Proof: Using the result of (3) if we puta=e, we obtain

Ed;(c")ze" ‘Ine=e*

Alternative Methods:
2 3 4

. - & X oy ;
(i) Let y=¢€" =1+Xx +—|+§T +~‘—J+... .This is the series expansion of €.

Differentiating both sides w .. t X, we get,

x 3 4 x¥ %
-(13—’=O+l+——+——+-—+...=l+x+-—+-—+ =p
dx 2! 32! 43! 2! 3!
Thus if y= ¢* then dy/dx = e".
(ii) y=Inx =logex. Taking the antilog on both sides, we get: e’ =x.

Differentiating both sides w. r. Ly, we get
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dx _, _dy 1 . o

E;-e =:>E—J{--;;-;—.Thusnfy:lnxlhen.dyldx:llx.

(i) Let y = o*, Taking log on both sides, we get: In y=lha*dIny=xin,

> X=Iny/lna

Differentiate both sides w : r Ly, we get

dx 1

=—==vylna=3% if v = a* -y
dy ylna dx Y Ma=a'Ina. Thusify a’ then, dy/dx = 2" In a,

(iv) Let y =log, x. Taking the antilo
a’ =x. Differcmiating both sides w .

a"lna=9—x- =§-(—i!:——-_l__ 1

= .Thusifyzlogax =>£ll= 1
. dy dx a’lna «xlIna dx xlIna
The following table sy

g on both sides, we get
r.ty, we get

mmarizes the above formulae.

a'nx lop,x

Find the derivatives of the following fu
-
()y= ln( e ;

.

\
Example 07; nctions.

2 2
(“) y :32x +Xx (1") y :clx +Xx
1+

Solution:
2 AP 1
(i)ijlzi In| 12X :—L—_i : x, , [NOTE:—d—(lnx)=—-J
dx dx 1+x? -[qul)dx 14 x> dx X

dy [1+x? (l+x2)(—2x)—(l—x2)(2x) ;—2x—2x3—2x4;2x3: —4x4
')_*[‘) (1x?) (-x)(1+x%) 1=
d

' d
. d sz x|_ 2x2+1_ d 2 I. 3' J: a.l :a“lﬂa
(ii) Eii:&_(_?, < )_3 -—-dx (2x +x) n using _dx( )

=33 (dx+1)In3 = (4x +1)3 In3

X°+x d 2 . _FL xY_ .x
(iii) g—i:dix(ez‘2+")=e2 ? -E(Zx +x), using T (e ) e

2
26212+x (4x+l)=(4x+l)82" +Xx

ivati i tions
Derivatives of Hyperbolic F unc .
We know that hyperbolic functions are defined as:

X - x -x x -x e:+e~x 2 2
itx =" aat="prhx = =" =2 e 2
Slrhx= 2 ’ 2 ’ e'+e_‘ S & 1e <
Consider, o

X _ =X P (e +e )_
d .. _i £ —¢ =l-d-('e"—e"‘)=—(e +e )=—-———2 =cosh x
E(“"hx)_dx 2 2 dx 2

d, .\
Therefore, —&;(smh X )= cosh x
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Similarly, the dcn'vativcs. of the other hyperbolic functions can be found. The complete
list is given in the following table. Students are advised to find these derivatives seeking

help of their tutors.

dy/dx ly dy/dx

cosh x ] coth x -cosech’ x
coshx | sinhx sech x -sech x tanh x
2
tanh x sech “ x cosech x | - cosech x coth X

Derivatives of Inverse Hyperbolic Functions
Inverse hyperbolic functions correspond to inverse circular functions and

are found by similar methods.

their derivatives

d e el 1
: —(sinh =
1. Show that ™ (sn x) ,_——xz T

Let yzsinh_| x = x =sinhy
Differentiating with respect to y, we get
d—x-coshyz:rdy— L : -
. dy dx coshy fi+sinh’y VI+x’

. d /. - I
Hence, —(sinh " x )=
dx ( ) Vx+1
The derivatives of other inverse hyperbol

derivatives are produced in the following t
taking the help of their teachers.

ic functions may be found in a similar way. The
able. The readers are advised to solve them

Y __dy/dx 2N | dydx
gt ey coth™ x | j/(1-x%) |

; -1 sV ¥ -
cosh™ x | 1/ I3 Sech™ x | 17 /]_xg

| |
le h-1 2 e’ 5
anh™ x 1/(1-x%) Cosec™ X _1/x (5P l

Example 08: Differentiate the following functions
(i)f(x)=xa"sinhx (i) f(x)= sinh™ (lanh x)
Solution: (i) We have f(x)=xa’ sinh x , differentiating, we get
d

) | | .
a[f (x )] =a;(xa’ sinh x)z xa" %(smh X )+x i (a“ )s'mh X+ %(x)a" sinh x

= xa” cosh x +xa” (Ina)sinh x +a" sinh

d 1 d
. — (tanh x)

o dr, L |
(u)a[f(x)]:d_[smh (tanhx)]=mdx

sech’x [ d 1. ‘

=" . |since —(sinh”'x)= di : =sec h?
m ( ) an dx(ldnhx) sech®x

dx x2+1
Logarithmic Differentiation

Iff (x)=u", where both u and v are functions of x, the derivative of f(x) can be obtained

by lak.ing natural Iogan't.hm on both sides of given equation and then differentiating
according lo.rules of derivatives. This process of finding the derivative in such cases is
called “logarithmic differentiation.” ‘
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v Example 09: Find the derivative of the l'unct.lon: =X
Solution: Given y = x™*, taking log on both sides, we get:
- I
lny:ln(xcosx) :>1ny=cosx.lnx | ) \—\ri. :
Differentiating both sides with respect to x, we get e
1 dy 1 . COSX K \
——==cosx| — [+Inx(-sinx)= -sinxInx )
y dx X . X
ﬂ=y COSX_Sinxlnx]:xcosx[_C_Q_E_i_sinxlnx) »
dx "X X

\/Example 10: Differentiate (sin x)* with respect to (cos x)*.

Solution: Let u =(sinx)" and v= (cosx)*. It is required to find du/dv.

First we take, u = (sin x )x . Taking In, we get: In u = x In(sin x).
Differentiating both sides with respect to x, we get

_l,ﬂlu—_-x( )(cos X )+ In (sin x)(l):>-3%=u[xcotx+ln(sin x)]

u dx sin x
Eig=(sin:l()"[xcmx+ln(sin:c):l (1)
dx

Now let, v = (cos x)*. Taking log, we get: Inv = x In(cos x)
Differentiating both sides with respect to x, we get

1 dv ] dv
—o —sin x)+In (cos x )(=> = v x tan x + In (cos
x(cosx ]( sinx )+In(cosx )(1)=> ¥ v[—x tanx n(cosx)]

dV X y
— =(cosx) | —=xtan x +In(cos x (2)
= (cosx)'[ (cosx)] -
Since d_u: dq/?—!. then from (1) and (2), we have
dv dx/ dx

du ~ (sinx)" |:x cot x +In (sin x)]
Y dv  (cosx)® [—-x tan x +In (cosx)]
/ Implicit Differentiation

In the previous sections we have learnt the derivatives of explicit functions y = f(x). In
practice, functions do not always occur in explicit form. Functions which are not explicit
are known as implicit. They are of the form f(x, y) = 0. For example, the equations:

x> +y =4, y - x +xy=3, siny+e*~Iny=0 :
provide relationships between x and y in which Yy is not expressed explicitly in terms of x.

Let us consider the first equation which gives on simplification: y = +y/4—x2 . We
observe that for one value of x, there correspond two values of y. Thus, this equation
does not represent a function. In fact implicit functions are not functions. They are called
function because they involve relationship between x and Y. The process used to
determine the derivative in such cases is called “Implicit Differentiation.”
The following procedure will be employed to determine dy/dx by implicit differentiation.

* Differentiate both sides of equation with respect to x.

* Collect all terms containing dy/dx on one side and all other terms on the other

side.
* Factor out dy/dx from all terms that contain it.
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e Solve for dy/dx after dividing both sides by the coefficient of dy/dx.
Example 11: Differentiate the following equation with respect to X
ysin'x-xtan'y=1
Solution: Given, y sinx - x tan' y=1
Differentiating both sides with respect to x, we get

Lyt x)- (xuan y)= -0

IRV N [ I IR ix]=o
Q[ya(sm x)+Sm de(y):l -delan y +tan }’dx()

-)[y[\[li7 ]+sin" (:—z}]—-[x (1+'}y2 ](g—i’}r tan™' y(l)} =0

5> Y +sin"x(d—y) g (dy )'tan_ll)’zo

N dx _]+y2 dx
o dy -1 y
> | sin”' x - . — |=tan  y-—
( l+y2 ](dX] \”._xz

5 (1+Y2)5i"_| X=X 1(dy ) _ Ji-x*tan”'y—y
1+y? dx NI
s L]
:dx J—x® [(l+y2)sin" x—x:I
Examﬂle 12: In each of the following find dy/dx

(i) y=a>+x’

Solution: Giveny =va® +x? . Differentiating w.r.t x, we get

y'zl(a%-x:)_”2 d(a:-ﬂtl):l TP
) 2 dx 2 Ja?+x*> Jat+x?
(i) y=VYx' +x+1

, 1/3 . o
Solution: Given that y =3x’ +x+1 = (x3 +x+ l) . Differentiating w.r.t x

- 2
Y'=l(x3+x+1) 2Jr:ii(x3+x+l): L3 9T
3 dx 3(x3+x+1)
(i) 'y = Jsin x
sin\/; .
Jsin x

Solution: Given that y = ——=. Differentiating w.r.t x, we get
sinVx
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' sin\/;a;\/sinx—\/sinxagsin\/; )
ys——— dx .

(sin \[;)2 _

; | P :
sm\f;.i(sm x) "% cos x — sinxcos\/;.j?l—(x)_”2

2
(sin \/;)
_ sinx/_a COS X — Vsin xiqs\/;
- 2+/sin x 2Vx :\/;sin\/;cosx—sinxcos\/;
; (sinvx) 2VxVsinx sin? Jx

(iv) y=flog,, (x2 + l)

Solution: Given that y= flogIU (x2 +I)

172
2 o ..
= [Iogm (x + Iﬂ . Differentiating w.r.t x, we get

v
y':%[]ogm(xz+1)Jm”2.%logm(x:+l)
- ! ! d/, 2x
. S
2\/10g,(, (x2+l) (x'+l).1n10 dx 2]1110(x2+1)\/10gm(x2+l)
X

(x2 +l) log,, (xz +I). In10
(v) y = tan(sin x)
Solution: Given y = tan(sin x). Differentiate w.r.t x, we get
y’=sec’ (sin x).disin X =cosx sec’ (sinx)
X

-

i - xsina x _
\ y=tan | —— |, o being constant.
\ I—xcosa

XsinQ |

Solution: Let z=———— = y=tan" z
]-xcoso
Using chain rule, we get
dy dy dz ] (I-xcosa).sino—xsin ot(0—cosat) i)
d—xzd—z'a—_l+zz‘ (l-xcosct)2
Consider 1
I ] : (I-xcosat)
= = 2 . a2
1+2° xsinot Y (1-xcosoa)” +(xsinot)
+ e e i b ——
! l1-xcos
? I-xcosoc)2
(l_sta) = ( . [Cosza+sin2a=1]

= 2 .2 B 2)
(l—-2xcosa+x2cosza+x sin a) (l 2X cosOL+ X

Thus equation (1) becomes:
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dy _ (1—3(008(1)' |—xsinocoso+Xxsinocoso | I
dx (l—2xcosot+x2) (I—XCOS(I)Z . (l—2xcosa+x2)

x2x +1

2
(vii) y = m(.’iﬁi}

2
. y +x+1 2
Solution: Given y =In XX oin(x?+x+1)=In{x"—x+1
y { ——r J ( )-in )

Differentiating w.r.t X, we get
‘ 1 d/ , 1 d/ 2x+1 2x —1
y=—e———(x"+x+l )X —geg ]|}

x2+x+ldx( ) xz—x+ldx( ) (x“+x+l) (xz—x+])

@x+1)(x2—x+D)-2x =) +x+1) _ 2(1-x*)
(x> +x+1D) (x> —x+1) (x“+x3+1)

Simplifying, we get: y' =

2
(viii) y=x"
2
Solution: Giveny =x" . Taking In on both sides, we get

2

Iny=1In (x“ )= x’ In x . Differentiating w.r.t X, we gel

’ 9 d d y 7 l
ly =x"—Inx+Inx—x" —x -+Inx.20=x+2xInx =x (I+2Inx)

y dx dx X
2 2
Thus, y' = yx (1+2Inx)=xx" (14+2Inx)=x" " (1+2Inx)
1/x
% (ix) y =(sin "' x)
x“‘ .
Solution: Giventhat y = (sin" x) . Taking In on both sides, we get

I/x

Iny= In(sin'] x)‘ = x"i“.ln(sin-'l x). Differentiating w.r. t X, we get:
] ’ 1/x d -~ | d I/x
—v' =x"* —In(sin " x )+In{sin "X )—X
d » ,l d - ,] l
Now —In(sin "X |= —sin” X=—m———
dx ( ) sin”' x dx JI-x?sin”' x

. d oy .
To find—x"",we let z= x"*. Taking log, we get

dx
| Inx . g ‘
Inz = — In x = ——. Differentiating w.r.t x, we get:
X X
| d x.(1/x)-Inx.l , d 1—In _
L. - ( )2 :azz—(x”"): ,,xzx”'l In x
7 dx X dx X~ x2

Thus equation (1) becomes:

ly’-_- X' Ed;ln (sin"l x)+ In (sin*' x)dixx”‘
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1x ]

= T | \ I_Inx
X o ey +ln(sm x)x "‘ 3
=D v = I/x 1 & el V 1-Inx
¥ YI:x —————-——msm_l - +ln(sm x)x "—XZ—-J
Or y = x* (sin“ x)x”" ] .\ In (sin'I x)(l—ln x)
VI-x?sin"' x x?

(x)x¥ ="
Solution: Taking In on both sides, we get:

In(x*) = In(e* ~Y) S ylnx=(x-y)lne=x-y [NOTE: Ine = 1]
Thus, y(I+lnx)=x =y=_% '
I+Inx
Now differentiating both sides w.r.t x, we get:
d d |
l+Inx). < x—x 4 —
y"=( nx)dxx xdx(l+lnx)=(l+lnx).l x'x_l+lnx—l_ In x
(1+1Inx)’ - (1+Inx)  (1+Inx)" (1+nx)

xi)y*+x¥=¢

\_/Solnﬁb’rﬁ Let u=y"and v = x". Then given equation becomes: u+ v = ¢

Differentiating both sides w.r.t x, we get: X +£ = (1
dx dx

Now:u=y" . s
Taking In on both sides . Taking In on both sides
Inu=Iny" : Inv=Inx’

=xIny : =y.Inx
Differentiating: - : Differentiating:
lgll=x£lny-}-lnyix— : lg\—f=ln)nc—-d—},r+y.~d—lm<
udx  dx “dx v dx dx X
d—u=u|:xi+lny.lJ : g\—rz\,jlnx.y#y.l]
dx y dx | X

Substituting the values of u and v, we get:

du xy’ il ok dv
— =y 2L 4] =X +y Inyand — =x
dx y [ ¥ "Y] y y+y Iny dx

Thus equation (1) becomes:

Xy Y +y Iny+xYnxy’ +yx! 7 =0 = (xy"" +x%In x)y'+(yx"" +y*In y)=0
b y':—[(yx"”l +y*In y)/-(xy"'[ +x”In x)]

(xii) [(x+y)/ (x-y)]=x"+y?
Solution: Simplifying given equation, we get: (x + y) = (x-y) (x* + y?)
Px+y=x-xy+xy -y P -y -xy+xy—x-y=0
Differentiating both sides w.r.t x, we get

5;)(3—%3/3-c.l—(i-(xzy)+—d—(xy2)——d—x—j—y=i

Inx.y"+ 1] =x"Inx.y +yx¥!
X

D 3%’ -3y’y - (x7y +2xy) + (2xyy + y2) - 1-y' =0
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Or (Z)ty--:nt2 -3y’ —I)y'—(ny—sz ~y? +I)=0
> y'=(2xy—3x2—-yz‘+1)l(2xy—x2—-3y2—l)

(xiii) x + sin”! y =Xy
Solution: Given equatlon is: x +sin” y—xy =0. Differentiating w.r.t x, we gel

d

d 1
-d—;x+d—x-sm y——-(xy)-———(O) = . l+-—l—\/—:_;—2—y
1 ; 1-xJ1-y* |, _ . - , (y—-l),/l—
= -x|ly=y-1= y=y-I S e
J1-y? J1-y ‘ 1-xyI-y°

(viv) y=In (e" /(l +e* ))

Solution: Given that

y=ln[ exx ]=In(e")—In(1+e“)=x[neﬂln(l+e“)zx*ln(l+e") ne=1]

‘—xy —y.1=0

l+e
Differentiating w.r.t x, we get

1 d e l+e*—¢" |
ot L)t e

[+¢* dx I+e I+e” l+¢
(xv)yzx

Solution: Given that y = «™* . Taking In on both sides, we obtain

2 {2 ,
n (x"“ )= In x.Inx = (Inx)" . Differentiating, we get:

Inx

Iny=1

1 : d : - 2InxXx
~v'=2(lnx).—Inx = v =2ylnx.—=
y (I )dx ) ! X X

(xvi) y = x.a'.sinh x
Solution: Given that: y = « 2 sinh x. Differentiate w.r.t x, we get

Y - A\ . 4 . ’ ’. - - .
y’=xa* (sinhx) +xsinhx (a‘) +a*sinhx(x), where( ) indicates derivative.
— xa* coshx +xsinhx a* Ina+a’ sinhx.1= a* [xcoshx +xsinhxIna+ sinh x|

(xvii) y = sec’ '(sinh x)
Solution: Differentiating both sides w.r.Lx, we gel
| d coshx coth x

y' = f—(thx = ——
sinhx\gnhzx—] dx q‘“h"\]smh x—l \Enhzx—l
‘ ]
NOTE: sec” x) =—F—=
1: ( ) xxlxz—l

(xviii) x = 3aU(] + ),y = 3al’/(1 + ﬁ)

Solution: Given equations are parametric equations, henu:g)i = dy dx (1)
dx dt dt
( )341 ) - (3a[2)(_1+ﬁ) (1+0)(6a)=3a% (0421) 6t

Now 9. ;
dt

(1+¢) () (1+¢)

APPLIED CALCULUS
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)(3a)-3at(0+2t) 3a(1-%)
d N )
. (1+12)2 (1+¢%) (l+t2)2
Thus equation (1) will become:
dy_ et d(l-e) (l+t2)2 2

dx (+eY (liav =

(l+t’)2 (l+t2)2. mx3a(l—t2) (l—tz)

. " 2
(xix) Differentiate logarithmically when y=3 ___x (x +_1)
2
{6

2 2 113
Solution: Given y=3 .x_(_x_izl_)_ X (x H)
(x=1) (x-1)’

Taking In on both sides. we get: Iny = %[In X +In (x2 +I)— 2In(x -l)}
Differentiating both sides, we get:

1,

y=lll, 2x 2 Ly Y|l ax 2
y 3| x (x2+l) (x-1) Y 31 x (x2+l) (x-1)
Substituting the value of y, we get:

.1 x(xzﬂ) 1 2% 2
Y =3 o

SV =0T (xBe) (x-)

(xx) y=(tanx )" + (cotx)™"

Solution: Let u = (tan x )™ and v =(cotx )*"* . Then

dy du dv
T (1)
dx dx dx

Now u =(tanx)™" . Taking In on both sides, we get

Inu=In(tanx )" =cotx.In (tanx)
Differentiating, we obtain:

2
—L]l—u'=cot x%ln(lanx)-rln (tan x)%(cotx}:f:itgiic—)iﬂn (tan x)(—coseczx)

=2 u'= u[cot2 xsec” X —cosec’x In (tan x ):|
Now consider, v= (col x)“m - Taking log on both sides, we get

Inv=In(cotx)*"™ = tanx.In (cotx)
Differentiating, we obtain:

d d _ tan x(—cosec? x) ©
lvv'ztanxa;ln (cotx)+ln(cotx)a—;(tdn X)= oix +In (cotx)(sec"'x)
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2 P
V= v[—tan’ x cosec’ x +sec’x In(cot x)]

Thus equation (1) becomes: _
4 2 2 ¢ - an? 2x +sec’x In(cotx)
y’=u| cot? xsec? x —cosec’x In(tan x ) |+ v| —tan” X cosec” x +sec’x

an x

Putting u = (tan x)* * and v = (cot x)™"", we get:

y = (tanx)™" [colz x sec’ x —cosec’x In (tan x )]

+(cotx )™ [—tan2 x cosec x+sec’x In (cot X )J

(xxi) y =x* |
\‘ 3 y
Solution: Given that y=x*  =» y =x’. (See the trick).

Taking In on both sides, we get
Iny =In(x’) = y. In x. Now differentiating both sides, we get:

' ’ ] ’ : ’ ]_' ]]x ’ > /2
ly =y_.+y|nx :;L_ylnx:_)i :(__}.I_._l____)y :_y_ =¢Y :“___}.____
X X y X x(1-ylnx)

3.4 CASE STUDY PROBLEMS

In this section, we shall study case study problems taken from diverse areas of physical,

social sciences, economics elc.
Rates of Change
Applications that follow from interpreting the derivatives as a rate of change are
presented in this section. To set the stage for the rate of change interpretation, we present
here examples on average rate of change and instantaneous rate of change.
Example 01: (AVERAGE SPEED) If Ali walks 7 miles in 2 hours, what is his
average speed?
Solution: Average speed is defined as the change in distance As divided by the change in
time At. Thus
Average speed =As / At

In this instance, As/ At = (7 miles)/(2 hours) =3.5miles per hours.
Hence, Ali’s average speed 1s 3.5miles per hours.
Example 02: (AVERAGE CHANGE IN AMTRAK’S REVENUE) From 1986
t01991, M/s Dunhill’s annual revenue increased from $861,000,000 to
$1,359,000,000. What was the average change in revenue per year during this time?
Solution: The average change in revenue per year is the change in revenue AR divided
by the change in time At. Thus,

AR _1,359,000.000-861,000,000 _ $498, 000,000

At 1991-1986 5 years
This s_hows that from 1986 to 1991, Dunhill’s annual revenue increased at the average
rate of $99,600,000 per year.

Example 03: What is the average rate of change of y = x* i:ronl x=1tox=5§?
Solution: The average rate of change is the change in y divided by the change in x

Y-y 25-
nﬂmelyﬂz( ) -(1) :25 I:;?iz
Ax 5-1 4 4

= 399,600,000 per year.

6.
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at 3 seconds?
Solution: (a) The average velocity for the first 3 seconds is -
2 2
As 5(3)—5(()) _ [“l6(3) ]‘["'6(0) ] _—l44 48
AT 3-0 3 3 '
Thus, the average velocity is 48 feet per second. The minu
traveling in the downward direction,.

(b) The velocity at 3 seconds s an instantaneous velocity. It is the velocity at a specific
time, when t=3. So we nced to evaluate ds/dt at { =3, Now s = -16¢*

>

s sign indicates that the ball is

v=$=:—I(—I(Stz):—léd%([l):—?:hfeet/sec.

At =3, gﬁ =-32(3)=-96 feet/sec.
t

This shows that the ball is traveling 96 feet per sccond (downward) afier 3 seconds.

Example 05: Lot Yy =5x" - x? 4 8x + 1. Determine the valye of derivative of ¥ when
x =4,

Solution: Given that y = 5x° _ 42 8x + 1. Differe
dy _d

d—-md—(ij—x2+8x+1)=15x2—2x+8.
X dx

ntiate w.r.t x, we get

Specifically, when x = 4,%31 = 15(4)2 ~2(4)+8= 240
X

Example 06: (POPULATION DECLINE) In 1980 the population of buffaloes in a

small town, was 355,000, In 1990 it was 328,000. What is the average rate of
decrease in the Population per year between 1980 and 1990?
Solution: The average rate of change of decrease in the popul
population AP divided by the change in years Ar, namely

AP/ At =(328,000 - 355,000)/1990 - 1980 = =2700.
It means that per year 2700 buffaloes are decreased.,
Example 07; (CORPORATE PROFIT) In 6
increased from $10,000 to $130,600. What w
per year during this 6-year period?
Solution: Let P be the annu

ation is the change in the

Years a corporation’s annual profit
as the average rate of increase in profit

al profit of the corporation. The

average rate of increase in
profit per year during 6-year period will be:
AP 130,600-10,000 120,600
. —=‘———‘——_=———=20]00.
At 6 6

Thus average profit per year is $20100.
Example 08: (DIVING HAWK) Assume th: ives from a height of 300 feet
and that its distance from the ground . i feet. What is the
hawk’s average velocity during the first 4 seconds?

Solution: The hawk's average velo
the change in time A,

as _s(4)-s(0) _ [30”" '6(4)1—[30()- 15(())3]
At —_I_(')—__ . —__“__4*—-————.__

city will be the change in the distance As divided by

_44-300 256
4 T
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Thus, the average velocity of the diving hawk is 64 feet pe

that the hawk is diving in downward direction.

Example 09: (ROCKET VELOCITY) A toy rocket is ‘shot straight up from the

ground and travels so that its distance from the ground after t seconds is
= 200t - 16¢* feet. What is the velocity of the rocket after 2 seconds have passed?

Solution: The velocity v is given by:
gt :i(zoot-mﬁ): 200-32t.
dtodt
After 2 seconds the velocity of the rocket v = 200—32(2) =136 feet per second.
Example 10: (FALLING OBJECT) A brick comes loose from near the top of a

building and falls such that its distance s (in feet) from the street (after t seconds) is
given by s=150-16t2. How fast is the brick falling after 3 seconds have passed?

Solution: The velocity aftert seconds have been passed is:
s d
v =9i=—(150—16[2):—321.

- dt dt
Now, at =3, we have v=ds/dL= -32(3)=-9¢.
Thus, the brick is falling with velocity of 96 feet pcr second (downward) after 3 seconds.
Example 11: (VELOCITY OF A CAR) A racing car begins a short test run and
81 +1* /3, where s is the distance traveled in feet and t is
of the car after 3 seconds have passed?

APPLIED CALCULUS

r second. Minus sign indicates

travels according to s =
the time in seconds. What is the velocity

Solution: The velocity of the car is:

\rzﬁz-é— 8+t N=1604+3 e =16+
dt dt 3 3

Now, after 3 seconds it is: Vi3 ={%] = 16(3)+(3)2 =57 feet/sec.
(=3

Example 12: (BACTERIA GROWTH) A colony of 1000 bacteria is introduced to a
growth-inhibiting environment and  grows according to the formula
n = 1000 + 20t + t*, where n is the number of bacteria present at any time t (t is
measured in hours). (a) According to the formula, how many bacteria are present at
the beginning? (b) What is the rate of growth of the bacteria at any time t? (¢) What
is the rate of growth after 3 hours? (d) How many bacteria are present after 3

hours?
Solution: (a) The number of bacteria present at the beginning is:

n =1000 +20(0)+(0)" =1000.

(b) The rate of growth of the bacteria at any time t will be:

dn d ; =
——[l:——(1000+2()t+l'):20+ 2.

Cdt d
(c) The rate of growth after 3 hours will be:

v=dn/dt=20+2t =20+2(3)=26, bacteria/hour.

v

(d) The number of bacteria present after 3 hours is:

| 0 =1000+20(3)+(3)" =1000+60+9 =1069.
Example-13; (SALES) Su.ppose that in June a chain of stores had combined daily
sales of ice cream cones given by s = -0.01x* + 0.48x + 50, where s is the number of
hundreds of ice cream cones sold and x is the day of the month. (a) How many ice
sold by the chain on June 3? (b) At what rate were sales chal;ging

cream cones werc
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on June 10? (c) At what rate were sales changing on June 28?
the rate of change of sales equal to 10 cones per day?

APPLIED CALCULUS
(d) On what day was

Solution: (a) On June 3, the number of jce cream cones sold is:

. $=(~0.01(3)" +0.48(3)+50)x100 = 5135
(b)\l;")iffercntiatc S W.I.t X, we get:
N ds/dx = -0.02x + 0.48. (1
Putx = 10, and multiplying by 100, we obtain,
_ ' ds/dx = 0.28 (100) = 28.
Fhisshows that on 10™ June the rate of increase in the sale of ice cream cones is 28,
‘{'(c) Putting x =28 in equation (1) and multiplying by 100, we get
N ds/dx = -0.08 (100) = -8.
the rate of sale of ice cream cone decreases by 8.
(d) Putting ds/dx equal to 10 in equation (1) and dividing the right hand side by 100, we
get: . 10 =(-0.02x + 0.48)/100 9 x = 476 ~ 5
This shows that on 5" June the rate of change of sale of sale will be 10 cones per day.
Example 14: (VOLUME) The volume V of a spherical balloon with radius r is

V=4nr’/3. Air is blown into the balloon, both the radius and the volume of the

balloon increase. Determine the rate of the change of the volume with respect to the
radius when the radius is 10 centimeters,

Solution: The rate of the change of the volume with respect to the radius
dV  4r

—=—3r" =4(3.14159)* = 1256
dt 3

.This shows that on 28" June,

will be;

When r = 10cm, (ill: 12.56(100)=1256 cm".
t

v Example 15: A dynamite blast blows a heavy rock straight up with a launch velocity
of T60 ft/sec (about 109mph). It reaches a height of s = 160t — 16¢* feet after t
seconds. (a) How high does the rock go? (b) What is the velocity and speed of the
rock when it is 256 feet above the ground’ on the way up and on the way down?
(c) What is the acceleration of the rock at any time t during its flight (after the
blast)? (d) When does the rock hit the ground again?
Solution: (a) In the coordinate system we have chosen
s as height from the ground up, so the velocityis [Ttttz :
positive on the way up and negative on the way down.
The time when the rock is at the highest point during :
the flight its velocity is zero. | 5
There‘f-ore, to find the maximum height, all we need to do is to find t when v = () and
evaluatc s at this time. Now at any time t, the velocity is

o < (! 60t —16t2 ) =160—-32t feet/sec.

V= i = —
dt dt

-Equate this to zero, we get: 160-32t=0= t =5sec.
This means that rock reaches at maximum height after 5 seconds which is,

Smax =5(5)=160(5)-16(5)" =400 feet.
(b) To find the rock’s velocity at 256 feet on the way up and on the way down, we find
the two values of t for which s(t)=160t —16t* = 256- Solving, we get

...1r

160t - 16% =256 = ~16t* +160t =256 =0=> > — 10t +16 =0 = (=2 or §.
- 73
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Two values of t show that after the blast, the rock is at the height of 256 feet after 2
seconds on the way up and at the same height after 8 seconds when the rock is on the way
back to the ground. The rock’s velocities at these times are:

v(2)=160-32(2)=96 f/sec and v(8)=160—32(8)=—96 ft/sec.

Thus at both instants, the rock’s speed is 96 ft/sec.
(c) At any time during its flight following the explosi
dv d 2
a=2 = C (160-321)=-32 fUsec™.
dt dt
Thus, the acceleration of the rock is -32 ft/sec. Minus sign in
against the gravitational force.
(d) When the rock hits the ground, the height is zero, that is; s = 0. So,
160t —16t> =0=>t=0 or t=10-
. Hence, after 10 seconds it hits the ground again.
Example 16: If two resistors of R, and R, ohms are connected in parallel in an
o make an R—ohm resistor, the value of‘R can be found from the
R R, R,
If R, is decreasing at the rate of 1 ohm/sec, and R, is increasing at the rate of 0.5
ohm/sec, at what rate is R changing when R, =75 ohms and R: 50 ohms?
| I 1

on, the rock’s acceleration is,

dicates that the direction is

electric circuit t

equation

Solution: Given NN )
RUR A\ S
dR dR,
El=—| ohm/sec. =5 - 0.5 ohm/sec, R, =75 ohms . R, =50 ohms
[ -
] d . )
From(l)wehavc—:—l_+ ! :R-+Rl —R = RR, )
R Ri RZ R|Rg RI +R:

Differentiating (2) with respect to t, we get
d d
drR —i( R,R, J_ (R, +R2)31(R|R:)"R|R: dt (R, +R5)

4t dt| R +R,

(Rz““R:)2

(R, +R,) R]dR1+R:d~E' -R|R, dR, 4R,
dt dt | dt dt

(R, +R2)2

Substituting all the values, we get

dr (50+75)[75(0.5)+50(=1)]~(75)(50)(=1+0.5)

— = o =().02 ohms/ sec.

dt (50+75)° e

Hence R is changing at the rate of 0.02 ohm/sec.

Related Rates

In physica'] and'mcial sciences many variables occur which are functions of time.
Problems involving rates of change of such variables with respect to time are called
“Related rates problems”. Methods of solutions of such problems are illustrated by
following examples.
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'Example l'?’: If'a tumor is approximately spherical in shape, its volume is
approxima‘tely V=4nr’/3. The radius of a tumor is growing in an animal is
increasing at a rate of 1.25 millimeters per month. Determine how fast the volume of
the tumor is increasing when the radius is 10 millimeters?

Solution: Given that dr/dt = 1.25 mm/month, r = 10mm, we have to find dV /dt.

Now, V=4n/3 (1)
Differentiating (1) with respect to t, we get

dv _ 4 2 dr _ dv - 3
s ):17 =4(3.14)(100)(1.25) = < = !570mm® /month.

Example 18: A cylindrical Can with radius 6 inches and height 20 inches is
completely filled with water. Suddenly, it is punctured at the bottom, after

which the water pours out at the rate of 12 cubic inches per second.

How fast is the water level falling?

Solution: The volume of cylinder is given by given V = nr* h. Here

r = 6 inches, h = 20 inches, dV/dt = 12 inch¥/sec.

We have to compute dh/dt = ?

Putting the value of r = 6, we get, V= 36nh.

Differentiating with respect to time, we get
ﬂ=361‘tﬂ=b l2=3.6(3.|4)ijh:>£l—ll: L2
dt dt dt  dt 113.04
Thus, the water level is falling (approximately) at the rate of 0. inches/sec

Example 19: A 30 feet ladder is leaning against a building. Suppose the ladder is
sliding down the wall in such a way that the bottom of the ladder is moving away
from the wall at the rate of 2 feet per second. At what rate is the top of the ladder is
sliding down the wall when the top of the ladder is 24 feet above the ground?
Solution: Let T be the top of ladder leaning against the wall
LetIBTI=y, |ABI = x and z = IAT! fect . Initially we are
given that z =30 ft, y = 24 ft and dyldt = 2 ft/sec and we T
have to find dy/dt al the instant when ladder starts sliding
down. From the right-angled triangle ABT, we have

xX*+y' =2 = x*+(24)’ =(30) = x =18
Now reusing equation: x* + y’ = (30)?
Now differentiating equation w.r.t time t, we get:

= 0.1} inches/sec.

ladder

0] B X A
X dy d 2 dx dy
2X—+2y—==—(30) = x—+y—2=0
xdt dt dt( ) t yd
d d 36
Substituting the values, we get: (18)(2)+(24)a%=0 = :i% = -15

Thus, top of the ladder is sliding down at the rate of 1.5 feet/sec. Minus sign shows that
the ladder is sliding down so the distance y decreases.

~Example 20: A kite is flying 150 feet high, where the wind' causes it to move

horizontally at the rate of 5 feet per second. In order to maintain the kite at a height
of 150 feet, the person must allow more string to be let out. At what rate is the string
being let out when the length of the string already out is 250 feet?

Solution: Let P be the position of person flying the kite, K be the position of kite and K*
be its position after the string is let out. Other points are shown in the figure.
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Now, z = IPKI =250 and IMKI = 150 feet. (wind —) _>
Let IPMI = x, IMKI| = y. Thus, by Pythagoras theorem, KXY— K
PKP = IPMP? + IMKE 9 (250) = x* + (150)" =¥ x = 200 feel. ‘ P L
It may be noted that wind bellows in the x-direction. 150
Thus dx/dt = 5 ft/sec. Now, using szthagoras theorem, ft
once again, thal is, 22=x*+ y2 =X+ (150)2 i
Differentiating w.r.L t, we get. P " M M
21g=2xd—x+0:59§=5d—x=39-9(5):4 ft/sec.

dt dt ' dt oz dt 250

This means that if the string is let out at the speed of 4 ftsec, the position of kite will be

maintained at 150 ft above the ground.
3.5 MARGINAL ANALYSIS

The managers of a manufacturing operation are concerned about the total cost of

maintaining a particular level of production. In other words, they want to know the cost
C(x) of producing X units. Furthermore, when a particular level of production is being
maintained, it is important to know the cost of producing one ddditional unit. For
example, if 100 TV sets are produced, what will it cost to make one more- the 101" TV?
Such information assists management in taking marketing decisions about production.
The rate of change interpretation of the derivative leads to a calculus application here. If
C(x) is the total cost of producing x units, then C*(x) is the rate of change of the total cost
and gives the approximate cost of producing one additional umit. C¢x) 1s called the
marginal cost.
Similarly, if P(x) and R(x) are the profit and-revenue functions. then P*(x) and R*(x) are
known as marginal profit and marginal revenue respectively.
Example 01: Suppose the cost of producing X units is C(x) = 100 + 30x — x’ dollars
(for 0 < x < 12). Determine the marginal cost when x = 9 units.
Solution: The marginal cost is: C (x)= 30 - 2x. For x =9, we have
' C‘(PH=30-209)=12
Thus marginal cost when x =9 is $12. This means that after 9 units have been produced,
the cost of producing the next unit (the 10" unit) will be approximately $12.
It may be noted that exact cost of prgducing the tenth unit can be cmn'puted as
C(10) - C(9) = [100 + 30(10) — (10)*] - [100 + 30(9) - (9)"] = 300 - 289 = $1 1.
This is approximately equal to $12.
Exal-nplc {.)_2: A furnit.urt: nr.}nu!'acturc!' determines that the marginal cost for
making _nthco tables is always increasing. The company decides to stop table
produ‘ctufn when lhg marginal cost reaches $110. Assuming the cost function for
(ah_le is C(x) = 0.01x" + 80x + 100 dollars, how many tables will the company make
before it halts table production?
Solution: The cost is given by C(x) = 0.01x~ + 80x + 100. Hence, the marginal cost is:
C¢(x) =0.02x + 80
Given that the marginal costis $110 110=0.02x + 80 =» x = 1500
This means that belore furth table is s A,
must praduce 1500 mhlc:l?n f}idpcr:)[((l)uilc|l():;1;Fﬂ::t')lllc(::;:tcopl’)ed. the furniture manufacturer
: g ginal cost equal to 110 dollars.

Example 03: The cost of producing x deep-tread radial tires is C(x) = 4000 + 70x - 0.01x*
dollars, and the .re'rcnue from the sale of x tires is R(x) = 105x - 0.02x’ dollars. o

(a) Determine marginal cost.

(b) Determine marginal revenue.

(c) Determine MR(50) and tell what it means.

(d) Determine the marginal profit.
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(e) For what value of x is the marginal cost equal to the marginal revenue, and
what is the marginal profit in that instance?

Solution: (a) Marginal cost MC = C‘(x) = 70 - 0.02x dollars. o
(b) Marginal revenue MR(x) = R“(x) = 105 — 0.04x dollars. =
(c) From (b) it follows that MR(50) = 105 - 0.04(50) = 103 dollars. .
This means that once 50 tires have been sold, the revenue to be obtained from the sale of
the next tire (the 51*) is approximately $103.
(d) The profit function is given by:  P(x) =R - C = -0.01x2 + 35x - 4000
Differentiating yields the marginal profit: MP = P¥(x) = -0.02x + 35 dollars.
(e) The marginal cost is 70 — 0.02x and marginal revenue is 105 - 0.04x. If they are equal
then: 70 - 0.02x = 105 - 0.04x = x = 1750
The marginal profit is then: MP(1750) = -0.02(1750) + 35 = 0. Thus, the marginal profit
is zero when x =1750 tires. You should not be particularly surprised; because
P¢(x) = R¥(x) - C*(x) and R‘(x) - C“(x) = 0 when marginal cost and marginal revenue are
equal in which case MP is always zero.
- Example 04: If the revenue function for a product is R(x) = 60x2/(2x + 1) find the
marginal revenue.
Solution: The marginal revenue is found by differentiating R(x). Now.

: 2 (2x+1)(120x)-60x*2 (2 2 > 2
R'(x)=-LRoxy =4[ 00xT )7 (2x+1)(1200)-60x™ (2) _ 240x +120x - 120x
. dx dx| 2x +1 (2x+l)’ (2)(-H)~

_120x* —120x _ 120x (x-1)
(2x +1)° (2x+1)
Example 05: If the total revenue function is given by R(x) = 60x and the total cost
“function is given by C(x) = 200 + 10x + 0.1x%, what is the marginal profit at x=10?
Solution: The profit function is given as: P(x) =R - C = -200 + 50x — 0.1x°
Now the marginal profit is:

; d
P'(x) =
When x = 10, P'(IO):SU—().2(IU)=43.
Example 06: If the total revenue function for a commodity is R = 40x - 0.02x2, with
X representing the number of units.
(a) Find the marginal revenue function.
(b) At what level of production will marginal revenue be (0?
Solution: (a) differentiating R w.r.t x, we get MR =R’(x) =40 - 0.04x
(b) The level of production at which the marginal revenue will be zero can be found as:
40-0.04x =0 =» x = 1000
Hence, 1000 number of units must be produced in order to have zero m
This means that there will be no increase in the revenue if 1000 units a
18, revenue will remain constant.
Example 07: Suppose the cost of producing x units is given by C(x) = 200 + 15x - 0.5x
dollars, for 0 < x < 12. :
(a) Determine the marginal cost when x=7 units,
(b) Determine the exact cost of the 8" unit.
(c) What is meaning of MC(7)?
Solution: (a) The marginal cost is;

MC(x) = C*(x) = 15 - x. At x=7, MC(7) = 15 — 7 =8
(b) The exact cost of 8" unit is given by:

P(x)zdiA(—200+50x—0.lx:):50-0.23(
X

arginal revenue,
re produced, that
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C(8) - C(7) = [(200 + 15(8) - 0.5(64)) - (200 + 15(7) - 0.5(49)] = $7.5 e
(cu? MCU) means that once 7 units are produced, the cost of producing the next unit (the
8") is approximately $8. v~
Example 08: Let the revenue function for a stereo system is R(x) =
X denotes the number of units sold.

(a) What is the marginal revenue if 50 units are sold?

(b) What is the marginal revenue if 100 units are sold?

(c) What is the marginal revenue if 150 units are sold?

(d) What is happening to revenue when 150 units are sold?
Solution: (a) MR(x) = R*(x) = 300 - 2x. At x=50, MR(50) = 300 -2(50) = 200
Thus, marginal revenue is $200/unit if 50 units are sold.
(b) At x =100, MR(100) = 300 — 2(100) = 100 dollars/unit °
(c) At x =150, MR(150) = 300 — 2(150) = 0. This means that if 150 units arc sold the
marginal revenue will be zero per unit. '
(d) R(150) = 300(150) - (150" = $22.
the revenue will be $22, 500
3.6 HIGHER DERIVATIVES
So far we have studied the first derivative of a fun
is itself a function, so we can find the derivativ
derivative of a first derivative is called a second derivative. We
derivative of a function f by differentiating it twice.
Let y = f(x) be a differentiable function on an_opcn interval (a. b). If we apply the

definition of derivative (0 f’(x), the resulting limit (if it exists) will be the second

300x — x°, where

500. This means that after the sale of 150 stereos,

ction. Since the derivative of a function
e of the derivative of a function. The
can find the second

derivative of y = f(x) and is denoted by y” = f"(x ) Thus,
("(x+h)-F
y” =" (x)=lmm e t(x)

h—0 h
Continuing in this way, we can evaluate the third, fourth and higher derivatives of
y = f(x), whenever they exist. The successive derivatives of y = f(x) are denoted as

follows:

S ’ . d ” . > 2’
Iy =F(x)=Diy=" 2y =t (x)=oxy=32
. 7 2
”~ ” 3 dj)’ d4
3. y"=("(x)=D",y= A% @ _ Y= bt g2
Sl Lkt A ™
n-|
(n_l)ﬁl : y(n-|) :f(n'”(x)z Dy = d n_)lf
dx

- n
nm: y(“)zt‘(")(x)=Dllxy: Y
dxn

Example 01: If y = tan' x, show that (1 + )y + 2xy* =0

Solution: Given that y = tan”' x. Differentiating twice, we get -

’ ] 2
y=—— = 1+ x- ' =
- I+x° ( ))’ !
Differentiating again, we get:

(l+x2)y"+ y (0+2x)=0 =>(I+x2)y”+2xy'=0
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Example 02: 1f v = In(\ sl X ) prove that (1+x’ )\ +xy -0

Selution: Differentiating both sides of givn equation w rt ¢, we get

| -2 ( 3
’ i + (Vi+x -~t)

T T L L B
_\'. - '"',--__._ s ‘+\j'+‘ = — "‘._'_:._‘_" = ‘r_ - o o

(\+\il+\')d" {\+\fl+x') \I+t"v.*~.'lu.']

' 1 3.
= ===y =VI+x'y =1.Differentiating once again, we get

Vi+x°
[ 2w ) 1\ V2 ; [ 1w vy
Vi+xTy +:(l+\' 2xy =0 =S Vl+xy + = =0
- vi+x’

=5 (!+\:]5"'+ \Wo=0

L, . b
Example 03: 11 v = sin(sin v), prove that y** + (tan x) y* ¢+ ycos” x =0
Solution: Given that v = sin(sin x). differentiating twice wrt v w
V' = cos(sin x). cos x

2> Y= COS(SIN X)(-5in X) + cos x [-sin(sin x). cos x]
> Y= - 8In X Cos(SIM X) - ¢cos” X sin(sin x)
. <IN X ) :

e Y =-—cosxcos(sinx) —— —cos” xsin(suix\2 Sy (TR A0S v
COS X

Notice that. cos x cos(sin x) = \ and _Z<miy iy ey

=4 Voo+tan x y #4005\ =4

Example 04: If x = sin t & v = sin Proshawethat (L) y " -xy s p'v =0

Solution: Given equations af€ partmieie cquarrons, hence

dy dx :

— =pcospt and %+ =08t Noag

d dt

dy dy Jdx pCos pt

= T 4 % PO pLATOM

dx  dir de

Cost

Alﬂn,g‘.{ ‘:!{ ‘;’? Cood \’ pospt 1
x {

Taxt dx j dx

dx- d cont
_ dfpcmm L de ost(=pTampt) = peos pr(-aint)

dt Cocost | dx coN® 1

dx

dt
Multiply by

d’'y : _
J-'; —‘[-—[!' costsin pt+pcospt sint |+cost
K‘ -

.
Cos™ L, we get

2
Cos™

= (1-sin? l)s';,{ = _P_costsinpt _ pcosptsint
3y Cos t cos h
i3 dz' . -0 " i
=a(l-sm“ t)—%z—p' sinpt + Bl ]sin L NB:sint=x,sinpt =y, il o dy
dx cost Tocost dx
2y d%y ; dy nd’y  dy
2(1-x" =5 =—p’y+x 2L = 1-x" ) —<—-x—L4+piy=0
( )dx‘ a4 dx ( )d(‘ dx =
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Some Standard n™ Order Derivatives _
neral rules of finding the n™ order derivatives of some

In this section we shall present you ge
standard functions. These rules are not app
(1) To find the n't derivative of X"

Let y = x™. Then its successivt derivatives arc:

y =mx™",y"= m(m- l)x“"z,y'z m(m-l)(m—2)x"'_3,--- . Thus,

[m—(n ~n]x™ " or y(“) =m(m-1)(m=-2)-

licable for every function.

y® =m(m-1)(m=2)- (m=-n+D)x""

0 nin-(n-2)-(nn(n-n)monsl) 32
(m—n)(m—n—l)---3-2-|

m! " ; W
> yW-= x™ " where m is a positive Inleger and n <m.
(m—n)!
n! ., n!
If n = m, then: yl") s """ =—x?=nl, aconstant. ~
(n—n)! 0!

If-n > m, then all successive derivatives will be zero.
Example 05: Let y = x* then find v®, v and y"\
6! 4 ; '
6 =645 _720x, y©=6!=720, ¥ =0
(6-5)!
(2) To find the o™ derivative of (ax + b)™
Let y = (ax + b)"™. Then its successive derivatives are

y = m (ax + b)" " ay"= m(m'— 1) (ax+ b)m—l a’,y"=m(m-1)(m -2)(ax+ h)m_‘ a’

Solution: y

Continuing this way, we get

y™ =m(m-1)(m —2)---[mw(n —I):](;nwrb)m_n a"
:m(m—l)(mﬂ2)---(m-n+l)(a..\c+b)m_n a"
:m(m—])(m—?)---(m—~n+1)(m-—n)(m—n—l)---3-2-I( men

(m—n)(m—n_l)...3.2.| ax+b)" ~-a’

(ax +b) " n<m-

n!

Ifn=m, then y™ = (ax+b) " -a"=nla"

) (n—n)!
Ifn>mtheny” =0

Example 06: Let y = (3x + 4)", then find ¥, v, y
Solution: Using above formula, we get o
76543213

5 - 2 2
3= = (3x +4) =612360(3x +4) -

7-5

e 1 .
y = S!(3\+4)

¢7-5)

(7) _ 7! 7-7 s 5
y “(7_7)!(3”4) 37 =71x 37 =(5040)(2187)=11022480 = y¥ =0

3. To find the n'" derivative of 1/(ax + b)
= (ax + I:r)*l :

ax+b
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n

! m-n
We know that if y = (ax + b)™ then: y(" - _M"2 (ax+b)

(m- n)!
Substimting m=-1, we get

v = EDE2)(3)-+(n)ax + by g0 = (=1)"1-23on (ax + by ™D

A y® (-D)"nta"
(ax +b)™!
Exalqple 07: Let Y =1/(5x - 3) then find y“’
Solution: Putting n = 4 ip (he above equation, we get:
O GORIE ~4321:5' 15,000
(5x=3)""  (sx-3) (5x-3)
4. To find the

n' derivative of In(ax + b)
Let y =In(ax + b). Differemiating, we get
y‘=a!(ax+b)=a(ax+b)" -)y“=a2(—l)(ax+b)'2
Py =a’1) (-2) (ax + b)?

Dy =a' C1)2)(3) (ax + b)* = -1)’31a%/(ax + b)*

. ) . ] ' n-1 —1)13"
Contmulng this way n- times, we get: y( ) =LL£_B_

(ax+b)"
Example 08: Let y = In(2x + 3) then find y

n-|
<i 112"
Solution: We know that if y=In(ax% b) then y!") ———~____( ) (n Dt

(ax +b)"
Using this formula on Y =In(2x + 3) and putting n = 10, we get:
1Y (9)19'0 10
y(10) _ (-1) (9)-3) ___ 2% e
(2x+3) (2x+3)
v Example 09: Find the n derivative of:
1 -1 X -1 2x
= S ) y=1 " d) y=tan™ ==
(@) y R (b) y - (¢) y=tan (a) dy -
1 1
ion: (i) Gi = = (N
Solution: (i) Given that y T, s )(a =
Decomposing it into partial fractions, we get
1 A B
= + (2)
(a+x)(a-x) (a+x) (a-x)
Multiplying by (a + X) (a - x), we get
I=A(a-x)+B(a+x) (3)

Leta-x =0 <> x = a. Put this in (3), we get,
I=A(a-a)+B(a+a)=1=2aB=B=1/2a
Leta+x=0=> x =-a. Put this in (3), we get
I=A(a+a)+B(a-a)=1=22A = A =1/2a.
Thus, equation (2) becomes:
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| 1 1 1 I 1
y—(a+x)(a—,x)_2a(a+x)+2a(a—-x)=y —2;(&+x+;—3(—}
Differentiating n times using the above formula, we get
d"yz_l_— d" [ 1 ]+ q [ 1 )]:J-[ n!(=1) N n!(-1)" }
dx" 2a|dx"{a+x dx" a-x 2a (a+x)"+l (a-x)“”

w_n| @ }_m(-n)“l | 1

y E; n+l n+l 22 O n+l
 (a+x) (a—x) _ (a+x) (a—x)
1

1
(b) Given that = = (N
Y val (x—ia)(x+ia)
Decomposing it into partial fractions, we get
1 A B
(2)

(x—ia)(x+ia)= (x—ia)+ (x+ia)

Solving as above, we get: A = 1/2i and B =-1/2i

. | 1 I ]
Thus, equation (2) becomes: y = m = E: N - )T ]

Differentiating n times using the above formula, we get ;

dﬂy_—l_ -‘j_"— I ) dn —_—I_—\ ‘-_l_— n'(—l)" B nl(_l)n
dx" il dx" | x—ia ) dx" x+iaJ 2ia (x_'m)“” (x+ia)“-|

y(n)ﬂn!(—l)“ 1 . 1
Zii.l (x_.la)lﬁ-l (X+i£].)n”

1 ] l

A WA X X _=l_ﬁ___-:l = :
O (a}zyl l+(x]2'a ﬂ.(uz+x3) u-(xz-{—uz) (x2+az)

a 7

d

Using the result of part (b), we get

y(n)___an!(-l)nl . lzn!(—l)"{ ] }
2 | (x—ia)"™" (x+ia)" 25 | (x—ia)" (x+ia)"

5
d)y= tan™! l = s Putting x =tan 8 =» 6= tan”' x.

—-X

o 2tan® E
2> y= tan”' 2;(2 =tan”™' —‘-‘1‘7— =tan"' (tan20)=20= 2tan”' x
o d=x I-tan~©
Differentiating w.r.t. X, we get.
I I A B ‘ : ;
y =2.—5—= 2 =2 . +—— |. Using Partial Fractions, we get.

P4l (x=D)(x+i) - X+i

. 2
A=1/2iandB=—l/21.Thus: ylz_T[ 1'_ ]_jlzl[ 1-_ 1 ]
29 x—i x+1] ilx-i x+i

Differentiating (n — 1) times and using formula 4, we gel:

I a1 l l " n—l| l l
Loy - e == (1) (=) -
Yo i( )y {(x—l)“ (x+l)":| Ll = [(X—i)"' (XH)“]
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n | | n. 1 |
i(-1) (-1 [(x—i)" (x+i)“] Y1 )[(x—i)" (x+i)"J

5. To find the n™ derivative of e*
Lety =e™, Differentiating it successively, we get

y =ae™,y" = a%", y"=a’e™,..., y(") = goeix.
Example 10: Let y = ** then find y?
Solution: y=¢?* - y? = (2)7 e’ =128¢*

6. To find the n* derivative of sin(ax + b)

Let y = sin(ax + b). Differentiating successively, we get

Y'=cos(ax+b)‘a=asin(ax+b+~g] [sincc cos0=sin(9+—§]]
y'=a-cos| ax +b+ = -a=a’sin ax+b+—IE+E =a’sin ax+b+2E

2 2 2 2
Y”=az-cos[ax+b+2§]-u:ulsin[ax+b+2g+~f—]za"sin[ux+b+3§)

o . . . ¢
Continuing this way n times, we get: y(W = g0 sm(ux +b+n '3 ]

a

Similarly, if y = cos(ax + b) then: ad—lr[cos (ax+ b)J =a"cos| ax+b+n =~ J
X

Example 11: Find the 4" derivative of sin(2x + 3) and 5" derivative of cos(3x - 4)
Solution: (i) Let y = sin(2x + 3), Using the formula that if

y=sin(ax+b) jthen y™ —yn sin(ax +b+n E}

=

-

y“) =24sin(2x+3+4g )z 16 sin (2x +3+2n)= 16 sin (2x+3)

NOTE :sin (8+2n)=sin @ . Similarly,

y® =38 cos(Bx +4+5~;E ]: 243(:05{3)( +4+ 2n+§f)= 24300s[4x +5+g]

> y® =243 sin(3x +4) NB:cos(8+m/2)=—-sin®
7. To find the n'" derivative of ¢* sin (bx + ¢)
Let y = e™ sin (bx + c). Differentiating with respect to x, we get

y =e* cos (bx +¢)-b+sin (bx +c)-e™.a
y'=e™ [asin (bx +¢)+bcos (bx +c)]
a=rcosO (i)

(D

Let
b=rsin@ (i)

Squaring and adding (i) and (ii), we gel

a’+b? =r2coszﬁ+rzsin29::>a2+b2=r2 ::;,rz\/a2+b2
Now dividing (ii) by (i), we get

b rsinB b (b
o =2 —=tan0=0=tan"'| =
a rcosO a a
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Substituting theses values into (1), we get
y =¢" [rcos @sin (bx +c)+rsin Bcos (bx +c)]

=re” [s'm (bx +c)cos 8+cos (bx +c)sin BJ

=re” [sin (bx+c +B)] [NOTE: sin (o +B)=sin ocosp+cos ausin B]

>y

. 2
Observing that yeis obtained from y merely by multiplying right side by 1= JaZ+b
and increasing the angle by g=tan"'(b/2)

rule successively, we get

Applying the same
y' = r2e™ sin(bx+c+ 26)
y" = e sin(bx +c+ 30)

Continuing this ‘n* times, We get: y(”) —"e™ sin(bx +¢ +n0).

Substituting the values of rand 0, we get:
o _-( 2 2 T ax ”IE
fyt=\a +b ) e™ sin| bx+c+ntan p

- f ax (n) _ 2 2 n/2 ax | b ” -IB i
Similarly, ify =¢ cos(bx+c)thcny f(a +b) e™ cos| bx+cHntan <

Example 12: Find the n'® derivative of:
\/éﬂ;’-l'- e cos’xsinx  (b)y= (x - 1) (x+2)] (©@y=X Inf(x - 1/(x+ 21
Solution: (a) Given that

. ~(14cos2x) . e :
Y=g cos? x sinx =¢€" L——Z——-—-)-smx =—;)—[sm X +s1n X €OS Zx]

ax I . .
)}:% [sinx+§{51n(x+2x)+sm(x—ZX)}-J
e™ |1 . 1. 1 )
]:T[Esmx+§sm 3x]=1[c‘“ sin x +¢e** sin 3x:\

= sin(a + b) + sin(a - b)

eax l
= L——\:sin x +—(2sin x cos 2x
2 2

2
NOTE: 2 sinacosb
Now we know that if:
b

. n/2
y = " sin bx then y" = (a2 +b2) g sin(bx +c+ntan” ——}
a

Using this formula withb=1and b =3, we get.
n/2

| +y/2 § a1 |
(n) — 2 2 ax | 2 2 g y 3
| , 2 2 ax -1
y -—(Zl + ) € Sll‘l(X'fﬂ[dl’l —14‘—(8 +3 ) c sln(3x+ntan —}

. e 02 N , o
= y™ =—4—l:(a1+1) sm(x+ntan '—}+(a“ +9)/ sin(?n(+ntan‘I 2)]
4 a

(b) Given that y = );2 = s 3 B--+ C
(x=1) (x+2) (x—1)2 (x-1) (x+2)

e | . 1 . 1 .
_° lsinx+—sin3x—_smXx
2 2

1 5 4
= + - , _
3(x —-l)2 9(x —1)+ 9(x+2). This is by Partial Fracuon Case—II

Sy e ceay
Thus, ¥ 3(x 1) +9(x—|) +6(x+2)
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Now differentiating successively, we get:

: _ ' _
N =362 (x-1) +%(—l)(x—1) 2 +§-<—*>(*+2) 2

Ys =—§(—2)(-3)(x—1)“" +%(—1)(—2)(x—1)'3 +%(—1)(—2)(x +2)”

1 .
=31 43 C-2y3) (x-1y? + SN2 (x+2)
=1y’ 4! : +' 5.3! - 43! :
3(x-1) 9(x-1) 9(x+2)
Continuing this n times, we get:
y(") :(—])“ -—(—I.]_+.l_)nl_+_2_+—._5_n_l_]_+-———‘.‘£.__
3(x=1)"* 9(x -1y 9(x+2)""
(c) Given that y=xIn (x-1) =

P x[ln(x—l)—ln(x+l)]= XIn(x =)= x In(x +1)
Differentiate w.r.t X, we get:

1 | - -
Y =X (X = 1) =~ x.—— _In(x 4 1) = X ] n(xogy = X : e+
' X —1 X+ |
x—1 | X +1 |
=——-—+——~—-———+—_+ln(x—l)—ln(x+])
X=1 x-1 x+1 x+]
1 1
=l+————|+—*+ln(x—l)—ln(x+1)
X — X+1 :
1 1 :
=_-___+___+|n(x_1)_|n(x+])=(x-1)“+(x+l)"+ln(x-l)—ln(x+l)
X=1 x+1

Differentiating successively n times w.r.t. we get:

Y B CN +—l“*'n-|{ S }
\:(x—l)"” (x+l)"+l}( a )(x—l)" (x+1)"

~REMARK: Here we have directly used formulae (3) and (4).
3.7 LEIBNIZ’S THEOREM

Leibniz's theorem helps us in finding the n™ derivative of the produilt of two functions of x.
Statement; If Y =uv, where u and v are functions of x, having derivatives of n'® order, then
Yo = ncflunv+ nClu

n

Yo =(-1)

a1+ "Cou, v, + "Cyu, vyt "Coup_ v, +.+ “Cn_,u]vn,, +"CLuv,
: - . . . n
where suffices of u and v denote the number of times they are differentiated and C,

— . . & n!
denotes the number of combinations of n with r and is givenby: "C =

ri(n-r)t’
Using this formula we have following results: ‘

. nt__nl_ g =Bt _n(n-1)
Cﬁm“ng‘l' © Mo-1) (a-1)

o=t _2(-N)@=2)t_ata-1)

Cz_zs(n—z)!_ 2'(_n~2)! 2
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. n(n=1)(n=2)(-3)! _n(n-1)(n-2) , nt _nl_,
C3 = = , Cn S ,_| -
31(n-3)! 6 ni(n-n)t
Proof: By “Mathematical Induction”, putn = 1, we get
yi=u v+uv,

Putn =2, we have y2=Wwv+2u vi+uva
Thus theorem is true forn = 1, 2. Supposc now that the theorem is true for n = k. Then
y, = ¥Cou, v+ Cu, v, + 5Couy v, + iy et “Ciot) Vi + *Cuv,

left:renlmung both sides of the above equation, we obtain

Vit = 5oy, v v+ Cylugyy +u Vo) + e Gy UV U Ve
{Coup V[ Cy + KCTu v, +KC + 4 Chluy Vo - +[5C + “C vy + Ceuvy,

But we know that forall ne N, "C + "C_, = "C.,,, - Using this result, we get:

k+l k+] k+l k+1 k+) -
Ve = ColnV+ YCu v+ Couy Yy et Couve + Cruvyy,

)+ ¥ C (U vy +uvy,y)

Replacing k + 1 by n, we get

y, ="Cou,v+"Cu,_ v, +"Cou vy oo+ TG, v "CB UV,
Hence the result is true for all positive integer n and theorem is proven..
NOTE: It may be noted that the term "Cu,_ v is a general term of the binomial

"Cnu\'“

expansion of (u + v)".
Example 01: Find the n" derivative of the function y = x'e™ using Leibniz’s

Theorem.

n_ax _ =l jax “zE AX n—-3 _ax
a € AU ) =a € ,--°

Solution: Let u=e™,u =a'e |u, = U T a
. 3 9
Again let v=x",v, =3x",v, =6X,v, =6V, =0
Using Leibniz’s theorem, we have
. . n . n A 1]

Yo = C“U”\ p Clun—i\l+ C-h,U"_z\:'flC}Un‘}\;
Substituting all the values, an taking e common through, we get

o en(n=1a"%x 6én(n-1)(n=2)a""

2 Faa r.l
L X +3na™ x'+-—( ) - ( )( )
L 2! 3!

ul

y":c""[a“x 4 311;1‘7x‘+3|1(n—1) = 'x+n(n—|)(n—2);ln_;:|

Example 02: If y = a cos(In x) + b sin(In x), prove that
¥’ Vo2 + (20 + 1) XVpor + (u +1)ya=0

Proof: We have y =acos(Inx)+bsin(Inx). Differentiating, we get

_ (1 I
y, =—asin(In x)l N J+ bcos(In '()(; ] Multiplying both sides by x, we get:

> xy, =-asin(Inx)+bcos(Inx). Again differentiating, we get
B I
ay, +y, (1)= uos(lnx)(h ] bsin (In )\)[ JZ—;[llCﬂs(lilX)erSin(]n ,\)]
= 4 KZYZ+")’!:__\' > Xzy;+xy|+y:() (1)

Differentiating (1) n times using Leibniz’s theorem, we get
[0~ 2 N, ‘

a CoYneaX" * (’l)n*l(z )+ Co¥ns '( ):| [ 0YanX T Cl.y (!):]'4’)/ =0
x*Yp2 + 20Xy 0y +n(n=1)y, +xy,, +ny, +y, =0
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XZYn-i-Z +(2n+l)xyn+l +n2}rn —ny, +nyn +Yn =0
XY,y + (2n+1)xy, +(n2 +1)y“ =(

-

<~

; k
\'Q)/" Example 03: Usge Leibniz’s theorem to show that if y = (x +y1+x2 ) , then
f g @ ('+"2)y..+z+(2n+l)xyn+. +(n? =Ky, =0

. k
Solution: We have y= (K +V1+x? ) » then differentiating it, we get

» { =k(x+ |+J_(?)k-[l+-2l—(l+x2)k%(2x)J:k(x+m)H[l+\/]x‘2J

:k(H\/W)kJ(%\/?]: ‘szy' =k(x+m)k

V1+ x2y, =ky = (I + xz)(y, )2 = kzy2 - Differentiating again, we get

(]+x")(2yl)(y2)+(yl ) (2x)=k3(2y)(yl)=>(l+x2)y2 +xy, =k’y (1)
Differcntiating (1) n times using Leibniz’s theorem. we get
["C”ywz (1+x*)+"Cyy, (2x)+"C,y, (2)]+["C“yn+, () K°Cy, (1)] =Ky,
(I + xl)yn+2 +2nxy, ., +n(n-1)y, XYy, =K’y =0
(I+ )(3))'"_2 +(2n+1)xy,, + n’yo=ny +n;'n k%, =0
(I +x2)yn+2 +(2n+1)xy, +(n2 —kz)y” =0
ample 04: If x = tan(In ¥), prove that (1 + x%) y,,; + (20X -1) yp + n(n - 1) Vn.1=0
Solution: Given that x = tan(ln y) =» tan”' x = Iy yoy =e'“"—l * . Thus,

| 1

Differentiating n times using Leibnitz’s Theorem, we get

3 —I - s

(l * X‘)yn-rl * "(Qx)}'n + n(r’])l )'2yn~1 —yn :0- Slmplllylng, we gel:
) n(n-—1

(J+x~).\'n,|+n(2x)yn+ (2f )'2},11-1'?);“:0

(1 +x%) Yorr + (20X - ys+n(n=1)y,. ;=0
cxample 05: If y = (sin”'x)?, prove that y )

\/(l;) Yu(0) = 0 if n is odd and (ii) 3;,.(0) =2.2°.4°...(n-2)*if nis even,
Solution: Given that y = (sin"x)‘, then

2 = 2 - =
Y, -"kii__i = VI-x"y, =2sin Ve, (1

Squaring both sides, we get

(l —xl)(y, )'1 :4(51’1{1 x)- =4y
Differentiating again w.r.t x, we gel o .
(1 - xz) 2yi. yv2 + (y.)2 (-2x) =4 y,. Dividing by 2y,, we obtain-
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(I—XZ)Y2—XY|—2=0 (2)
Differentiating this equation n times using Leibnitz’s Theorem , we get:

-1
(l_ z)yn 2+n( 2X)Yn+l n_(92_|—_)(_2)y _[xyn+l+n'IYn]'.-0=0'
Simplifying, we get: (1 - %) Yns2 - (2nx - D)X Yar1 =N° Ya=0 (3)
Put x =0 in (1), we get: y;(0) = sin’ (0) 0
Put x = 0in (2), we get: y2(0) =2 4
4)

Put x = 0 in (3), we get: yus2(0)=n y,,(O)
Now in (4): Putn=1, y3(0) = 12 y1(0)=0
Put n =3, ys(0) = 32y3(0)=0
Putn=35, y7(0) = 5 ys(0)=0
This shows that if n is odd, then y,(0) =
Now in (4): Put n =2, ys(0) = 2 .y20) =2. 2°
Put n =4, y6(0) = 4 .ya(0) =2. 224
Put n = 6, ys(0) = 6 y4(0) = 2.2 4? 62
This shows that if n is even, then yq(0) = 22°4%.6° ... (n— 2)2

WORKSHEET 03

|. Differentiate the following functions:

(i>r(x)=1x2+‘-x+'.(u)r(){w] (i)1()= (<3)(2: 1)

vx+i

(w) (x) f(h—l)(x +xrl) () (x) Tl

2. 1f f(x) = 6x° — 5x + 3, find £ *(0). For what value of x 1s [ *(x) =0
3. Fnd y° where:

s f ]+ ')
(a) y=x""’ _Ab) —ln[ \/_J (c)y:lan'(l+"x)
fosnli 2—x
- - 4
) y =|n(qin" e’ ) ny= (sin_' x‘) (2) y =(cos" xl)n
| -cosx | —cosh x
(hy y=-—"— (i) y=—"— i) y= il
y | +cosx " l+coshx Wy logm( X
(k) y:cm" |- x7 / M )'=.secf'($;inh\) (m) y =cosh™ (l+x2)
_(ry,\/;-?-\/;—\ﬁz() (0) xy: -2xy+x=1 (p) x* +y3 —3axy =0
3 ’ 1/2
@ y=(x*+y") (M lan"(l]+ y=1 - (9 y=tan~ [ ZS5X
X l+cosx
(t) tan”' (x+y)=sin*] (e" +x) (u) yzsin'1 (Inx)—ln(lan'I x)
- - - I+ x h ;
A9 y=s1n'(c0l ' l———] [Hm[: Put x = cos 6]
e - X

/(w‘fxz a(t-sin ) and y = a(l = cos 1), (x) = 3cost-cos3tand y =3 sint - sin 3t

’
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(¥) x = a(t - sin 1)2& Y=2a(l-cos t) (za) x = alcos t + In tan W) & y=asint N
(zb) x = tan™' -—E- & y =sin™! 26

_ 1-9? 1+6?
4. Differentiate logarilhmically:
23 .
@ y=_dxl-2) 5 ymres “1)
(2-2x)" (3-4x) ) ¥ =x"¢*sin(Inx) ©y=e
@y=—_(x+2)
v +3)} (e) x () y = (sin x)* (@) y=x"*
\‘ H COS x sinx ‘
ﬁ = (8in )™ * 4 (cos xy' () y = (sin x)™** LTy = X" + (sinxy’
: fsnln y=x smga + X) prove that y* = sin*(a + y)sin a "
6. 16"+ xy + 3y’ = |, Prove that (x + 6y)® y¢¢ 427 =
7. Different; i Vi

(i) (x)=1In (arc:s:in e*) (iii) f ()
(iv) f (x)= a_rccos(\/] —xz) (v)f(x)= cosh”'(

=ln(lanh2x)
l+x2)-

i dy.
\/8 Find d_x ineach of the following;

- 3
() xX*+y3- Jaxy =0 (ii) y = arcsin (Inx)-In (arctan X)
(iii) arctan (x+y)=arcsin (e’ + x) (iv) yarcsinx —x arctan y=1
9. Find dy/dx in cach of the following:
|
(i) y = (tan x ) +(cotx )™ (i) y = (x)x (iii) y = x'x
10.1f y = & sin bx, prove that y!
1. The driver of an experimental

(iv) y=x.
-2ay! +(u:+b:)y=()

{3 racing car begins a test run, Duning the first 6 seconds. the distance s (in feet)
" of the car from the starting point is
s=14-0*/3  0<i<6
where 1s the number of seconds the car has been moving, What is the velocity of the car after 4 seconds have
passed? .
0 At time L, the position of a body moving along the s — axis is s = ' - 6° + 9 m. (a) Find the body's
vvf acceleration cach time the velocily is zero. (b) Find the body’s speed each time the acceleration 1s zero.

« Emd the total distance traveled by the body fromt=0tot=2.

#13. A bicycle manufacturer estimales that it can price its bicycles at p =140 - 0.02x’ dollars
cach, where x is the number sold. The cost of producing x bicycles is 900 - 0.01x dollars. Determine the
marginal profit when 20 bicycles are made.

/ I4. The pollution in a lake is being reduced over a S-year period. The amount of pollutants (in pounds) is given
by A=110-22 g<i<5
t+1

where (is the time in years, ‘

(a) Determine the amount of pollution in the lake at the hcginning. after 2 years, and after 5 years.

(b) Determine the rate at which the pollution in the lake is changing at r =2 years.

(c) What is the meaning of the given sign obtained in part (b)? . ‘
',,/ 15. On Earth, in the absence of air, a rock at a velocity of 24m/sec (about 86km/h) would reach a height of s =
\\ff( 241 - 4.9¢° meters in t seconds,

(a) Find the rock’s velocity and acceleration at time 1. 7

(b) How long would it take the rock to reach its highest point?

(c) How high would the rock go? | . .

(d) How long would it take the rock to reach half its maximum height?
(e) How long would the rock be aloft?
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r bullet fired straight up from the surface of the moon would reach a height of s = 832t

- 2.61° feet after t sec :
onds. On Earth, in the absence of air, its height would be s = 832t — 161° feet after t seconds.

How long will the bullet be
. 7!701’; in cach case? How high would the bullet go? > X
. Suppose an oil spill has taken the form of a ci i i is i i |
b meters per hour. At what rate is the radius of Lhimmu'nr REIORCAAAL e .mcrcasmg e ﬁiﬂf I"“"OO Sﬂ___“@

region increasing when the radius is 200 mecters?
(‘_ . . .
18. Consider a spherical balloon with volume V =47r’ /3 that is being inflated by helium at the rate of 4

;"/ubic feet per minute. At what rate is the radius increasing when the radius is 2 feet”
& 19. A rocket is launched straight up. There is an observation station 7 miles from the launch site. At what rate is
traveling at 200

" the distance between the rocket and the station increasing when the rocket is 24 miles high and

jmiles per hour?
( %0 A helicopter rises vertically at the rate of 10 feet per second. There is a maker (M in the figure) 80 feet from
O here the helicopter lifts off. At what rate is the distance between the helicopter and the marker changing when

W
the helicopter is 192 feet high?
P Helicopter >
/
'
'
”
M 80 feet
‘r‘/’li. A ball is thrown straight up from the ground and travels such that its distance from the ground at
any time tis 8= —16t* +80t feet. Find its acceleration at any time )
22. Find the n' derivative of following: 2/
X 2 .
@Y=" 2 (b) y=——72 (c) y =cos’x (d) y = sin 2x cos 3x
2x° +3x +1 “+ac
e y=c" cos” X Ny=Inx" (g)y =" sin 4x cos 6x
(My=x"""Inx ()y=e'Inx

(h)y:x‘lnx
MHy=In(2x+3)

(k) y =¢"*sin(2x +3)
23.1f y =sin (aarcsin X ), prove that (1 - )yara = (20 + DX Your + (07 =27 ya

24.1f y =e™ """, show that (1 - xz)y‘"”} -(2n+ l)xy("")—(n: +m? )y(“} =0-

4" (Inx) (1) n! |1 1
_~25. Show that: = | Inx—=l—-————+--——|-
dx" | x X" 273 T
4 2x
<

26. Use Leibniz’s theorem to find the n" derivative of y = x
7 .1 2
sin"'x show that (l—x )sz —(2n+1)xy, ., —n2yn =(0. Hence prove that

27. If y =
(1-x)ys = Txys =9y, =0
JiS If y = cos(m In x), show that xzyw2 +(2n +I)>(yn+l +(m2 -n? )yn =0

29.1fy= sin~! x /1= x?.then show that y,,> = (n + 1)? yn

30. If y = sinh(m sinh™'x), prove that (] 5 )y2 + Xy, — mzy =0

31 Ify"™ + y''"™ = 2x, prove that (xz —l)yn+2 +(2n +1)XY, 4 +(n2 -m® )yn =0

I/m

. - m 1 2
Hint: y"™+y /™ =2x = y""+——=2x = y™ +1=2xy

-

;__byllnl_zxyifm+x2=x2_l ‘:’(yffm__xf:XZ_lﬁ(yllm_x)_ =

y""":x+~’x2—f :py:()(-}-\/xz-'l)m.

This is same equation as Example 3 of Leibnitz’s Theorem Section.
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CHAPTER
FOUR PARTIAL
DIFFERENTIATION

4.1 INTRODUCTION ' - fe e e
In the previous chapter we dealt with the calculus o.f func_uqns otj one varlgb e and sa
what powerful tools of differentiation could be used in assisting \.wth analysmqand design
in engineering, natural, social sciences and marginal analysis problems? In ‘many
engineering and other applications, however, the system or phenomenon we ‘Wlfh to
model mathematically'depends on more than one variable. For example, the area ‘A* of a
rectangular metallic plate of width x and breadth y is givenby A=xy.
Since the variables x and y are indeperdent of one another, we say that the dependent
variable A (araa) is a function of two independent variables x (width) and y (breadth). We
express this by \writing A = f(x, y) or simply A(x, y). As another example, the life ‘L* of
an aircraft wing Ray be modeled by: .

L=kAvp
where k is a constant, A is the area of the wing, v is the aircraft speed and p is the air
density. This is an example of a function of three independent variables: A. v and p-
this case we write L = f(A, v, p) or simply L(A, v, p).
More generally, a variable z may be a function of n independent variables X1 X35 X5 Xii,
which we express as: z = f(x1, X2, X3,.. X;) (1

The function of n-variables given in (1) has a domain in n-dimensional Space, a range
and a rule that assigns each n-tuple of real numbers (x,, X2, X3,.. Xp) in the n-dimensional
domain with a real number z in the range. Again the rule is frequently expressed in terms
of mathematical formulae. Furthermore, a domain may be a restricted region in n-
dimensional space: for example if T = 1(x, y, 2) represents the temperature of 3 heated
rigid body at a point in the body having coordinates (x, y, z) then the functional
relationship has no meaning at points outside the body, so the domain is the set of all
points (x, y, z) within the body.

In this section we are primarily concerned wit
functions of more than one variable. As
functions of two or three independent variab|
We now discuss two important concepts
independent variables which can be extended
Limit and Continuity
A function f(x, y) is sai
independent of the path as x — a and y—

,Itl_r’r: f(x.y)=L,L being a finite number.

h extending the concept of differentiation to
results can be adequately illustrated using
€s, we shall restrict our attention to these,

namely ‘Limit’ apd “Continuity’

. in two
to three or more variables.

y—b '
A function f(x, y) is said to be continuous at the point (a, b) if:  Jim f(x y)
. . ) X—=a yah ’
exists (finite) ; i =f(a '
(finite) and x-,l:T_.bf(x‘Y)-f(d’b)

Generally, lim li =1 : w
y HuLﬂf(x-y) i‘_’:‘; lﬂf(X,Y)].Bul 1t is not always trye,
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continuity of a given function along some
bola or any other curve.

FARKALEET SERIES

REMARK: Sometimes it is asked to find the
specific path that may be a straight line or para

Example 01: Evaluate the following limits.
X

- 3xly oy 1 y
@) lim———5— (i) im——— (iii) lim —— -3
XY +5 230357+ o +2y
. 3y [ 3Py | 6x? 6 _3
S lut: M = i e e =lim ——= -
olution: (1 lxlir: X2+y2+5 lxlg}[};l-cn;x2+y2+5 x=1| x2+9 10 5
y—2
(ii) lim Exy - =lim| lim %xy - =lim[—gz—]=9-. Thus limit does not exist.
;:g3x +y°  x20 y=03x“+y x—=0| 3x 0

: 4x ' 4x
(iii) lim ————y = lim | lim 2y =1|m[ - ]=11m —
S T+2y?  xom|y23xt 4y’ | aoeL3xHA] AT X (3+4/x )

y—2 .

= lim ———4——— =i=0
o x(3+41%7) |

Example 02: If f(x, y) = (x + y)/(2x - y), show that lirr:)[lim f(x,y )} # iin;[linéf (x, y)}
x— y0Lx—

y—0
. " : ; . . X¥X . X : 1 |
Solution: Consider lim limf (x,y)|=lim| lim = lim|— |=lim| = |=~
x—=0| y=0 x—=0 )'—402){-—‘1,( x=0| 2Xx x=0| 2 2
Now consider Iim[linﬁ(x.y)]:lim[lim Ay }: nm[L} lim[-1]=-1
x—0[ y—0 y=0| x=202X =Y y—=0| —y x—0

We observe that linzj[lin;l f(x. y)] # lim[]imf (x. y):l
x—=0] y—=0

y—=0Lx—=0

Example 03: Show that the function f(x, y) = (x + y)/(x + 2y) is not continuous at
(0, 0) along the straight line y = mx.
Solution: lim X 2 =lim{ S ]zlim Fmy ) im (Fem) | I+ m

. ;:gx+2y eool x+2mx | x=0| x(142m) | x=o| (1+2m) | 1+2m
Since different values of m produces different values of given limit hence, given function
is not continuous at the origin (0, 0).
Alternatively, consider:

X

; : : ; X+y ; ;
lim|limf (x,y)|=lim|] = = =
xl—%liy]—m ( y):l xl—r)rgl[yl—r:éx +2)(jl llﬂ[x] xl—l-rl("ln(l) :

Also, Iim[limf(x.y)}zlim im =Y | = lim| L |=1im 1.1
y—0L x—0 y—0 x—)0x+2y y—0 2y x—0 | 2 2

l:ll_.l‘:?]f()(,)f)]¢ll_l;l‘(l}[ll_l{ll)f(x,}’)] hence, given function is not continuous

Since lim
x—0

—

at (0, 0).
Example 04: Examine the continuity of the function f(x, y) given below at (0, 0).

f(x y)={xy/(x2+y2’- (x.y)#(0,0)
' 0 . (x.y)=(0,0)
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T o[ xy 7 To7 o
Solution: lim Limf(x,y)[=lim| lim T 7 |=lim[ = |== (Undefined)
x=0| y—50 x—;ﬂny—;?x +y ] x=0| x 0
- - . 0
Similarly, lim[limf(x.y)]zlim lim zxy > |=lim 3,}:— (Undefined)
y—=0Lx—0 y—;o_t—ﬂ)x +y° y—ou_y" 0

Since both limits are undefined hence, given function is not continuous at the origin
(0, 0). »

4.2 PARTIAL DERIVATIVES

Consider a function of two variables 7 =

= f(x, y) with D; cR% If x is changed to
X + AX and y remains constant, then the change Az in z is given by:

Az = f(x +Ax, y) - f(x, y)

taking the limit Ax tends to zero, we have

lim 8% _ - f(x+Ax.y)—f(x,y)

Ax—=0 AX  Ax—0 Ax

If the limit on right side exists, it is called the partial derivative of z wrt X and is
usually denoted by: 9z /9x or f, orof /ox .

The symbol "9"is known as “dawa”. Hence 9z/9x is read as “dawa z over dawa x”". It is
also read as “partial z over partial x™.

Dividing each side by Ax and

Similarly, the partial derivative of z = f(x, Y)Wrtyis
z fFx.y+Ay)-1(x,
2 Lim &% i L +8Y)~F (x.y)
ay Ay—0 Ay Ay—0 A)'

provided the limit on the right side exists.
The calculation of partial derivatives

of a given function z = f(x, y) is quit simple. To
obtain f,, we find the derivative of f w.

r.Lx holding y constant.

Thus, if: z=x"+y* > %=2x+0=2x and 22—=0+2y=2y
ox dy

and if z=x"y’ > B—Z:Z:(y2 and 2,'!£=2x2y
ox ay

ensional (X, y) plane on -
values; that is, the level curves are determined by

f(x,y)=c

For example, the level curves for the function z =
radius ¢, where c is the value of z on the level cy
particular case of a function of two variables, the fu
in three dimensional Space, the surface bein
corresponding to (x, y, z), with z = f(x, Y), using

surface may be built up from the level curv
z =%t 1y

which the function takes constant

X v =c? are concentric circles of
rve (see fig. 1). Altematively. in the
nction (1) may be viewed as a surface
g obtained by plotting the points
the rectangular Cartesian axes. Such a
es as illustrated in figure 2 for the function
A
A

Fig. 1 Fig. 2
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In the particular example z = x* + y? it is rchatively easy to draw its surface. In general,
however, plotting such surfaces is not easy. There is now widely available computer
software that helps to plot the graphs in 3- dimensions.

Analogously to level curves for functions of two variables,

functions of three variables: w= f(x,y, Z2)
These are the surfaces on which the function takes constant values,

and so are determined by © f(x,y, z) = constant

we have level surfaces for

Figure 3 shows the level surface forw=x+y + z%
Geometrical Meaning of Partial Derivative ;
Suppose z = f(x, y) is a function of two variables. T
We know that z represents a surface in R’. Surface
Now consider those points of the surface z = f(x, ¥) z=f(x,y)
for which y = ¢. Geometrically, this means we are
considering those points of the surface where the
surface z = f(x, y) and the plane y = c intersect
each other which in fact is a curve. (see the figure )
On this curve z changes with x while y remained
constant. Therefore, 92/0x represents a slope of the
tangent to this curve z = f(x, ¢) at the point P. This is shown in the above figure.
Similarly, 92/0y is the slope of the curve z = f (d, y) at the point (d. ¥, f(d, y)).

2 2
XTHY" orove that(fy =f;)? = 40—, —f,)
Ty . ; \

Example 01: If f(x,y)=

Solution: Differentiating f partially w.r.tx, we get,
C(x+y2x=(’ yh o 2 2xy-xP -y x2 +2xy -y’

£, 2 2 2
(x+y) (x+y) (x+y)
J2 _ 2
Similarly by symmetry, we have f, = L%ﬁ—zx— . Thus,
(x+y)
LHS = (f, <F)’ = (2 2xy-y) - (P e2y-xt [ 1200 -yD) |
- (x+y)’ (x+y)’
2 2
_g[aonimn [ x=y) a5
1 (x+y) (x'+y)

xl+2xy-—y2 _y2+2xy—x2
(x+y) (x+y)

RHS = 4(1-f, -ry)=4[1—

=4[x2+2xy+yz—x2—2xy+y2-y2—-2xy+x2:|

(x+y)?
7. 2 N
_4X 2ny;y _4 (x-Y) ”
(x+Y) (x+Yy)
From (1) and (2) it follows that: (t" ~f, ) :4(1_& _f)‘)
Example 02: I u =sin”' (i]+ tan”' (X J.prove that xu, +yu, =0.
y X
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Solution: Differentiating u partially w.r.t x, we get,

1 | 1 y] 1 y

u, = —+ |-=|= -

’ | & IR 2( ) Iy -xt x7+y?

- y X _
P e B W
\/yz__x?. x2+y2 .

_ _ 1 X 1 1 X X

Similarly, u, = =. -—2J+ T == - —
- = .
X X
->yux=-‘j2 =t @
_ y —-x° X' +y

Adding (1) and (2), we get: Xu, +yu, =0 ,
Example 03: If u= (1 - 2xy + y*)'12 prove that xu, —-yu, = y2u®
Solution: Given u = (1 - 2xy + y*)'?, Differentiating partially w.r.t x, we get

du 1 -32
qu‘z_E(l‘z"y*Yz) (=2y)= : 32
(]—2xy+y2)
-312

> xux=xy(l-—2xy+y2) l (1)
Differentiating partially w.r.t y, we get
P _ | -3/2
a—“=uy=—5(l—2xy+y2) (_2X+2y): (K+y) 5

Y (l——2xy+y2)' i

312

> yu, =(xy-y*)(1-2xy+y?) )

Now adding (1) and (2), we obtain
Xu, — yuy = Xy (l >N 2Xy+ yj )—31'2 B (Xy— yz )(I —2Xy+ yz )—31'2

= (XY -xy+y’ ){(I —2xy+y? )_”2]3 =y’

Example 04: If Z = e *™) f(ax — by), prove that b Z, + a Z, = 2ab Z
Solutien: Given that Z = ¢ *® f(ax — bg(). Differentiate partially w.r.t x, we get
Zy=ae™*™ flax — by) +ae™*™ feax - by)
2> bZi=abe™ "™ [flax-by) + f‘(ax — by)] (1)
Now differentiating partially w.r.t y, we get '
Zy=be™ ™ flax —by) - b e™*® f ax _ py)
> azy =ab e(ux +hy) [f(ax _ by) -f¢(ax — b}f)] (2)
Adding (1) and (2, we get:
bZ, +aZ, = ab ¢ * ™ [f(ax ~ by) + f “(ax — by)] + ab @ *» [f(ax - by) - f (ax — by))
=ab ™ * ™[ f(ax - by) + f *(ax - by) + f(ax  by) - f “(ax - by)]
= ab ¢ "> 2f(ax ~ by)) = 2ab [e“*** f(ax - by)] = 22bZ
Partial Derivatives of Higher Orders .
The partial derivatives f, and fy may possess derivatives where fis a function of two
variables x and y.
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In such cases, we may define the second order partial derivatives as follows:

2(m). 20,

ax{ox | ax* ox?
3(82] z _ ¥ _.
Jy ayz ay: ¥
: (az Pi_ j_(ﬁ]z oz I
dyld J dyox ayax b ax|dy | oxdy odxdy

The partial dcnyatwcs f.y and f,, are called mixed derivatives. In general they are not

o 9
. f.=f
dydx axay oty =i

equal, however, if they both exist (finite), then:

For example, let z = f(x, y)= x2 yz, then

fo=2xy’,  f=2x"y, fu=2y>  f,=2x% foy=4xy, . =4xy.
You may observe that: fuy = fyx

Example 05: Show that f,, = f,, if f(x, y) = sin™ (x/y).

Solution: Differentiating f partially w.r.t x, we get

L i(i S W
* = 2 Y)Y -xty (AR
y

Differentiating (1) partially-w.r.t y now, we get
?f 9 1 %) p B —y
e ———=~(y -xH) 2= —1/2(% <) (G D)
dyox E)y yi—x? Oy (y*-x?)?
Now differentiating f partially w.r.t y, we gel (2)

of 1 d{x

SR 3)
\I \/y - x?

Diffc(cntiating (3) w.r.t X, we obtain

ﬂ =i e _qx. * o (4
oxdy ox \/yz—xl nyz_xz y —x2)"2 ()’ _x2)" )
From (2) and (4) we see that: fw = f,x

Example 06: If [(x, y) = " sin y + ¢’ cos x, show that f satisfies Laplace equation
fox + fyy = 0.

Solution: Differentiating f w.r.t x, we get: f, = ¢* siny —e” sin x

Differentiating again w.r.t x, we have: fu = €" sin y —e’ cos x (1)
Now differentiating f w.r.ty, we get: f,=¢" cosy + e’ cos x
Differentiating again w.r.t y, we obtain: f =-e"siny + ¢’ cos x (2)
Adding (1) and (2) we get ’
fx + fyy =0
2

Example 07: If f(x,y)=x"tan""' (1}_yz tan™'| £ | show that o’ _x° —y

X y xady x2 +y?

Solution: Differentiating f w.r.t y, we get
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CUNRE Y __a_(z)_
: m

2.2
X X|x“+y
-—-———+——’-(L-— 2ytan”' X ——(2——2——)-2ytan" X =x—2ytan™' X
(7 +x7) (2 +x)” V) (ytex?) y
Now differentiating w.r.t X, we get
a2 3 2 2 2 2 2
.B‘xayﬂ--Zy : ax[x) 1—( 221 2).§= 24x2 0

[l+ ] y:+x y y
y

Example 08: If U =
Solution: Differenti

f(x + at) + g(x — at), show that U,=a’ U
ate U partially w.r.t x, we get

U,=f (x+al)+g‘(x-at)
leferenuatmg again partially w.r.t x, we get

Usx=fF*¢ ‘(x+at)+g ¢ “(x ~ at)

(1)
Similarly differentiating lwu.e partially w.r.1 t, we get

U.. =a’[f¢ “(x + at) + g (x — at)] 2)
From (1) and (2), we see that: U,=a’ W~

Example 09: Let V= (x? +y? 4, 2y i »M#0. I Vi + Vyy + V,, =0 then find m.

/2 . ; .
Solution: Given that V = (x2 +y*+22 )m . Differentiate partially w.r.t x, we get
m

m-2
7_—1 S . .
V, = E(x2 + y2 +7? )2 22X =mx (xz +y? +zz) * . Differentiate again w.r.t x
2

m- . m-2
V, = mli(x2 +y? +zz)TZ d+x m2—2(xz +y +2%) 2 - .Zx}

=m(x2 +y2+i2)T [l+(m—2)x2 (x2+y2+22)_|]

n2 —1

97



http://www.itwebister.com

FARKALEET SERIES APPLIED CALCULUS
FARKALEET SERI

-2 .
And,V,, =m(:t;2+y2-&-zz)m_l:H(m—?.)z2 (x2+y2+zz) I].

m-2

=V, +Vyy +Vz =m(x2+y2 +22)T[3+(m-2)(x2+y1f+zz)(x2+y2+zz)ﬁl].—_o

m-2

' iz
=m(x2+y2 +12)T [3+(m—-2)]=m(m+l)(x2+y2+zz) 2 =0

=>m(m+1)=0 =m=00r m=-1

Itis given that m # 0. Thus m=-1.
Example 10: Suppose that the revenue from the sale of x Model-A stereo speakers
and y Model-B stereo speakers is given by

R(x, y) = 100x + 150y — 0.3x" - 0.02y” dollars
Determine the rate at which revenue will change with respect to the change in the
number of model-A speakers sold, when 50 Model-A speakers and 40 Model-B
speakers have been sold?

. dR
Solution: The rate of change we seek is %—-(50. 40)-
X

Since, R(x.y)=100x +150y —0.3x* -0.02y" - (1)

Differentiating (1) partially with respect to x, we get

R _100-0.06x - At (50, 40), 3—R(50.40)= 100-0.06(50)=97
x .

X
This means that the additional revenue that will be obtained from the sale of Model-A
speakers is approximately $97, assuming that 50 Model-A speakers and 40 Model-B
speakers have been sold.

Differentiability
Let z = f(x, y) be a function of two variables. The differential of z is defines as:
dz= 2-2— dx + 95 dy
ox ady"

In case if z = f(x, y) is constant then dz = 0. In this case

oz 0z dy f

dz=—dx+-—dy=0 =fdx+f dy= —=-2=

ox dy d " =0 = dx f ()

y

Formula (1) is used to find the ordinary derivative if a function is given in implicit form.
Example 11: Find dy/dx if x> + X’y +y’ =0

Solution: Here f(x,y)=x’ + X’y +y D f, = 3x% + 2xy and f, = x* + 3y2.

> dy __f, 3% +2xy

dx f x? +3y?

. y
Example 12: Find dy/dx if e* + sin xy =0
Solution: Here f(x, y) =¢" + sin xy

> fx = ye* +y cos xy
And fy=xe" + x cos xy
xy
Now. QX_:_L::_Y(C +COSXY)_ y
&« f, x (c“ +cos xy) X
e ' -
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1. Evaluate the following limits:
; 3 - =W -
(i) Im?)% (1) Im?J x+5y (1) hm! Sxy = . (iv) lim Xy ix
X= x—=0 X X— x|
y—2 X y y— y y—reo e y y—l Xy—<y
f(x, how th f
2.If f(x,y)= 2x+y show that ’l‘l_r}})[ll_'rr(\) (x, y)];tll_rg{’l(l_r,:;l)f(x y)J

3. Show that the function f(x, y) defined as
2x* +y, (x.y)=(1,2)
0 . (y)=(12)

is not continuous at (x, y) = (1, 2).

4. Show that the function f(x,)r)-_—mn"(ll and f(x‘y):lan—l[ 2xy )
X

f(x,y)=

x2_y?
20 a2
satisfies the Laplace equation a—z + g E =0
ox*  dy’
2 2
5. Show that ot A where:
axay dyox -
(a) f(x, y) = In (c* + ") (b)£(x, y) = In (x* + y*) - In(xy)
(c) f(x, y) = x sin Xy + y cos xy (d) f(x, y)=n(e* + &%)

6.If Z = In(e* +e) show thal - Z‘)—(Z“)
7. Ifu=r"andr’ = x* +y 4+ 2%, show th‘uuu+u}\+uu—m(m+l)r -2
8. If ux + vy =0 and u/x + v/y = |, show that ux—»y—[(x +y )/() -x%)]

J’u B 2*u
ox’dy  oxdyox

10. Find dy/dx in each of the following case. Verify the results by using the formula
dy/dx = -f,/fy.

'(a)y2+xy+ax =() (b)x3+x2+xy3+siny:0

9.If u = x’, prove that
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CHAPTER

UNDAMENTAL THEOREMS
FIVE E pu

AND
INDETERMINATE FORMS

In this chapter we shall discuss some important theorems of fundamental importance in
calculus. These theorems help to study the behavior of various functions. We shall also
study an indeterminate forms and a very important topic called “Asymptotes”,
5.1 ROLLE’S THEOREM
Statement: If f(x) is a function such that
(i) It is continuous on the closed interval [a, b]
(i) It is derivable in the open'interval (a, b)
Gii)  f(a) = f(b)
then there exists at least one value ‘c* in the open interval (a, b) such that f’(c)=0.
Proof: Since given function f(x) is continuous on [a, b] hence it is bounded therein and
attains its bound. Let M and m be the upper and lower bounds of f on [a, b]. There occur
two cases: '
Case I: When M = m, that is the upper and lower bounds are equal. In this case the
function f(x) is constant (see figure 1) and so its derivative at every point in (a, b) is zero,
that is, f(x) = ¢ (constant) then {(x) = 0for x € (a, b). Hence the theorem is true in this

. case. See figure 1. fix)=c
If M # m, then at least one of them will be different from . .
f(a) and f(b). This is shown in figure 2. ! Fig1l i
E) >
éﬂb)
: > Fig. 2 : »
l | "
Now suppose that; M # f(a) = f(b) (1

Let the point where the upper bound M occur be ¢ that is, f(c) = M. Then from (1) ‘c*
must be different from a and b. This implies that ‘c‘ lies inside the interval [a, b], that is ¢
€ (a, b). Take ‘h* as a positive real number such that ¢ — h and ¢ + h both lie in the

interval (a, b). Then: flc-h)<f(c) and f(c+h)<fic)
: f(c-h)—f(c
> _(C+f(_‘ﬂ <0 ()
and f{c—h)-—f(c):f(c+(—-h))—f(c)$0
h h
Multiplying both sides by -1, we get: f(cﬂ—hh)) —f() 20 3)

Taking limit h <» 0, we obtain respectively from (2) and (3)
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f*(c)<0 and f’(c)> 0. This implies that: f(c)=0.

his proves the theorem.
Geometrical Interpretation of Rolle’s Theorem
Since f(a) = f(b) the ends of the graph of f(x) are at the same horizontal level. Since f(x)
is continuous, the graph of f(x) is either a horizontal line or a smooth curve joining the

points (a,f (a)) and (b,f(b)).

A A

cr'"'
v
N
K/
o

pf-==---1

0
Fig. 1 Fig. 2

In the first case the slope of a function is zero for all X. In the latter case, the graph must
have turning points hence the tangent at these points must be horizontal. In other words.
the slope of the tangent at such points is always zero.

Remarks: A 300-year old theorem of Michel Rolle (1652 — 1719) assures that, if any
function satisfies all three conditions as mentioned above, then there exists at least one
point ‘¢’ in (a, b) where the slope of the tangent line at x = ¢ is zero, which means this
tangent line is parallel to the x-axis.

Other two graph are also shown here.

A A
Fig. 3 [(c)=0 Fig. 4 Fci)=0 Fca=0

E-------3

7 9 Wl
0O a o b 0

/"Physical Meaning of Rolle’s Theorem

o
Let a stone be thrown from the ground into the air. Suppose the height of the stone after /*“"""
time t be s = f(t). Surely the stone will hit the ground after some time so, f(0) = f(T) = 0. /

The function s = f(t) satisfies the conditions of Roll's theorem on the interval [0, T].
Hence at certain time t, € (O,T) the velocity of the stone is zero, that is; f *(t;) = 0. We
know that indeed it happens.

[t may be noted that Rolle’s Theorem does not guarantee to hold for a function that does
not satisfy any one of the three conditions given above. There may or may not occur such

point.

REMARKS: :
(i) Every polynomial and e*, sin x, cos x are continuous for all real x.
(i) log x is a continuous function for all x >()-

(iii)  If [ and g are both derivable on the closed interval [a, b] then f+g and fg
are also derivable on [a, b]. [/g is derivable in (a, b), provided g(x) # 0 for any
X€ (a, b).
Example 01: Verify Rolle’s Theorem in each of the following cases for
(a) f(x) = x* - 6x + 8 on [2, 4).
Solution: Herca=2, and b =4.
(i) Since f(x) is a polynomial, therefore, it is continuous on (2, 4].
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(i) f‘(x )= 2x — 6, which exists (finite) in the open

(i) f(2)=4—12+3=0,f(4)=16-24+8=0=f(2)=f(4)=0
ons of Rolle’s Theorem. So there

interval (2, 4)

Hence, f(x)=x"-6x+8 satisfies all three conditi
such that f’(c)=0- Now

must exist at least one number ¢ between 2 and 4
he open interval (2, 4) and

f'(x)=2x-6=f"(c)=2c-6=0=¢ =73. This is a point in t
thus, the theorem is verified.

(b) f(x) =1-x*on [-1,1]

Solution: (i) The given function is no
the given function is not continuous in the interval [-1, 1].

(i) Also f'(x)=0—zx’”3 — . which does not exist at x=0€ (-1,1) and so f is
3 3 ¥x

not differentiable. Hence Rolle’s Theorem is not applicable to the given function on

[-1, 1].
(¢) f(x) = x(x + 3) ¢** on [-3, 0]
Solution: (i) Since x(x +3):x2+3x and e ¥? are continuous functions for all x,

t defined for any negative value of x. In other words

therefore their product x (x +3) e¥l= (x2 +3x) e ™2 is-also a continuous for all x. It
implies that f (x) is continuous in [-3, 0].

(x2 +3x) e /2
2
:—l[—z(zx +3)+x+3x | e = —1(f4x ~6+x”+3x) e

2 2

(ii) £'(x)=— +e 2 (2x+3)=(2x+3) e —%(x2 +3x) e

# 1 -x/2 3 . .
f (x)=~—5(x2 —x—6)e 2 which is derivable (finite) in (-3, 0) and hence f’(x)

exists.

(i) f (a)=f(-3)==3(-3+3) e * =0, (b)=f (0)=0=f(a)=f(b)=0-

Thus, f satisfies all three conditions of Roll’s theorem. So, there must exist at least one
number c in (-3, 0) such that f'(c)=0-That is; ‘

, 1, N
f(c):—g(c'-c—é)e""'zo N (cl—c—6):0 '

= == X
c=-2.3. [Note: e* # 0 for any finite value of x]

But c=-2¢ (— 3,0) whereas c= =
e ) 3¢ (-3, 0)- Hence Rolle’s Theorem is valid and
(d) f(x) = sin x/e* in (0, )
Solution: Since both sin x and e* i Y
: . e are cont i :
there exists a point ¢ in side (0, ) such lha:l;‘li(();)s;no(& ) and derivable on [0, ], hence

X
v — ot X .
Now f/(x) = S_Co8X=sinxe* _sinx —cosx
5 =
(ﬁ‘) ex %

N f,(c)zsinc—cosc: ‘,

ot 0')5'“C‘COSC=0‘)Sinc=cosc = sinc/cosc =
9_tan ¢= I 2 ¢ = /4. We know that /4 e
This verifies Roll’s Theorem with ¢ = /4

belongs to (0, m).
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(e) f(x) = (x -a)™ (x-b)"on (a, b] where m, n are positive integers and a, b are real.
Solution: Since m and n are positive integers so given function is product of two
polynomials. Hence it is continuous as well as derivable every where. Now

f'(x) = (x=b)".m(x —a)™"! +(x—-a)".n(x —b)™!
=(x —a)""I (x —n)"_I [m(x -b)+n(x —a)]
= f'(c) =(c-a)m'] (c—n)""] [m(c-—b)+n(c—a)]=0

= [m(c—b)+n(c-a):|=0 = mc-mb+nc—-na=0

_(na+mb)

-)c(m+n)=(na-|;mb) 2 c
(m+n)

S / Mean Value Theorem

Statement: If a function f is such that

(i) It is continuous on the closed interval [a, b]
(ii) It is derivable in the open interval (a, b)
then there exists at least one value ‘¢’ in the open interval (a, b) such that

f(bg::(a):f,(c).

Proof: Let us define a function G(x) by
G(x)= A x + f(x)

where A as some constant to be determined such that G(a) = G(b).
Since Ax is a continuous as well as derivable function for all real X, hence G(x) is also
continuous and derivable function. Thus G(x) must satisfy all three conditions of Rolle’s
Theorem including G*(c) = 0. Now

GX)=A+f"x) PG (O)=A+f(c)=> A+f'(c)=0 2> A=-f(c).
Now, G(a)=G(b) P Aa+fla)=Ab+f(b) D> A = [f(a) - f(b)])/(b — a)

> -f(c) = [f(a) - f(b)]/(b - a)
scff ,
Or f(b) (3)=f (c)
b-a

This verifies the “Mean Value Theorem”.
Geometrical Meaning of Mean Value Theorem

Let A and B be points on the graph of the function y :f(x) corresponding to X =a and

X =b- Therefore the coordinatés of the points A and B are (a, f(a)) and (b, f(b))
respectively. Hence,

Slope of chord AB = difference of ordinates _ f(b)-f(a)

difference of abscissae b—a
Now, MVT states that if any function satisfies two conditioned as mentioned above, then

there exist at least one point ¢ inside the interval (a, b) where the slopes of tangent and
chord are equal. In other words at such point chord and tangent lines are parallel. Thus

f(b)—I‘(a):f,(C) : 4 A

b—a

f(a) f(b) f(b)

This is shown in the adjacent figure.

O i

Y S

0
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Example 02: Verify Mean Value Theorem for the foll

possible.
(i) fx) = (x-1) (x-2) (x-3)on[0,4]
Solution: Here

owing function and find c if

f(x)-—-()nc-—l)(x—-Z)(x—:’a)=(x2 —3x+2)(x—3)=x3—6x2+l 1x —6

isa polynomial hence it is continuous as well as derivable on the interval [0, 4].

Also, f'(x)=3x"-12x+11
Therefore, by the Mean Value Theorem, we have
- y f(4)-f(0
L) f(a)=>3<:'—l2c+ll——-—-—-————( ) )

Fe)=—"y 4-0
64—96+44—6)— (-6
=5 3c2-l2c+11=( 2 )-(-6)
> 3c1-12c+11=3:¢3c2—12c+8=0-

Using quadratic formula, we get
c=2+1.155, and ¢ = 2-1.155 or c¢=3.155 and c=0.845:

We observe that both values of ¢ are admissible since both lie in (0, 4).
(i) f(x) =¢*on [0, 1].
" Solution: f(x) =¢"is continuous as well as derivable function. Now.
f(0) =€’ = 1, f(1) = e. Also f'(x)= eX = f'(c)=¢°
' , f(b)-f(a . = .
Thus by MVT, f (c)=-—(—3——(~):>eL =IE’%=e—l —sIne“ =In(e-1)
_.—a —
=c=In (e—l)=0.54le (0, 1). This verifies MVT.

| / 5.2 INFINITE SERIES

A question that frequently arises in both engineering and mathematical problem-solving
s the behavior of a solution when one (or more) parameters in the problem statement are
changed. This occurs in sensitivity analysis when we examine solutions for their
dependence on errors in the original data. One of the mathematical tools for such analysis
is Taylor’s Theorem. In this section we shall develop the theorem and then use it to solve
problems.
/ Maclaurin’s Series

~/  Suppose the function f (x) is represented within a certain interval (including x = 0) by a
power series of the form:

f(x)=a, +a,x+2,x° +a,x  +a,x  +oa, X
where a’s are constants. _

Now differentiating the power series term by term, w.r.t X, we gel
£'(x)=1a, +2a,%x +3a,x* +4ax’ +---
f’(x)=0+1.2a, +2.3a,x +4-3a,x" +-
f7(x)=2.3a, +2.3.4a,x +---

n-1

-

-

( ¥ .ae sen see see sss
f )(x)z(n-—l)an_, +nla X+
Assuming that derivatives of all orders exist at x = 0, then

- Y £(0) = £°(0) .. -
f'0)=2a, =2, f'(0)f°(0)=2ta, =a, = 2(! )'f 0)= Jla, =>a, = f 3(|0),...

104


http://www.itwebister.com

v

FARKALEET SERIES APPLIEDE CALCULUS
£(0)

-1y

f‘(n-l)(O): (n —-])a"_l =a, =

Thus, power series becomes
, ” ~ (n-1) oo N
(=100 1O+ Ehe s T, (8000, s,

7 (nh-1) S n!
This is known as Maclaurin’s series.
It shquld be 'notec_l that a function cannot be represented by a Maclaurin’s series unless the
function and all its derivatives exist at x = 0. Maclaurin’s series is useful in computing
the value of a function only when x is small (near to Z€ro).
Example 01: Find the Maclaurin’s series of the following functions:
(i) sin x (ii) e*.
Solution: (i) Given f(x )= sin x
Differentiating successively with respect to x, we get
f'(x)= cosx,f*(x)=—sin x,f"(x )= - cos x,f)(x)=sinx,
£ (x)=cosx, F®(x)=—sin x,f 7 (x)=-cos x,f®(x)=sinx,---
Substituting x = 0, we get
f(0)=0,f(0)=1,£"(0)=0,£"(0)= -1, “(0)=0,
F90)=1£90)=0,6"(0)=-1,f(0)=0,..

The Maclaurin’s series is

f(x)=f(0)+xf’(0)+x> %(!E)+ %’ \

”» l’_;)
D)+ 1 (0)+...
3! 4!

. sinx =0+ l+£(O)+ﬁ(“l)++£(0)+£(i)+£(0)+x_7(_|)+}_S(O)Jr
% 80 % =UHx (12 L K a1 s VT e T Thaidle

3 7
Pt x

INX =X——+———+
Thus, sin X TGIT
(ii) Given f(x) = e"
Differentiating successively with respect to x, we get

f'(x):e‘,f'(x):'e",f'(x)=c",f'(x)=e‘,f(4)(x)=e".~-

At x = 0, we get
f(0)=e’=1f(0)=e’ =1.f"(0)=¢’ =1,f"(0)=€" = 1,f W (0)=¢® =1....

The Maclaurin’s series is: 4
’ XZ - x3 - X 4)
f(x)=F (0)+xF"(0)+ 17 (0)+ 3, £7(0)+ 7 1V (0) ...

Having substituted the values, we get

3 4
g X

X = Sty sy
AT AT

r X3 XS X7

\
i | L
I-/'gmple 02: Prove that, tan x=x—-j—+—5——-§—+....

Hence find the value of Izr- ,
Solution: Let f(x) =tan"x = f(0) =tan"(0)=0

f’(x):l/(lﬂcz) =f{'(0)=1
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f'(x)=(1+x2)"'af’(x)=—1(1+x3)‘2(2x) =1"(0)=0 | 1J
f'(x)z—ill(]+x2)"2(l)+x(—211+xz)_}(Zx)J=~—2[(l+x2) —4?(2(1‘*’"-)—
=8.)(1(1+;t:2)_'\—2(1+3tc1)42 = f"(0)=-2, '
' 4 3 2 Y3 x)
f“"(x)=8%2(—3)(1+x3) (2x)+ 1+ %) (2x)}—2{:2(1+x ) (2_31
:8{-6x3(l+x2)_4+2x(1+x2)_' }+_8:-:(I+x2!1
:—~48x3(1+x2)_4+I6x(l+x2)_3+8x(l+x2)
-)f(“)(x)=24x(1+x?)’3-48x-‘(1+ﬁ}‘,r‘”(o):o,...
Now the Maclaurin's series is: )

f(x)=F(0)+xf'(0)+ %f'(o)+§f”(0)+ =

F@0)+...

2 3 4 5
X~ X X X
lun_' x=0+ X(|)+—2—"(0)+§l—(— 2)+-*4—'(0)+—45' (24)+

-

¥ x ®
an”'x=x——+———+...
tan X 3 s 7
Putting x = lin the above expansion, we get
|
-1
tan” (I)=1 - =-HETATH
) AWO\\/
1 1 1
E:I—l+l~l+---::>n=4 l——+——=+- |
4 L QP L 3 5 7

Hence the value of 7 can be obtained to any degree of accuracy using the above result.

It may be noted that humanely it is not possible to take infinite number of terms of this
series if a value of given function is to be calculated at x = 0. If we take only finite
number of terms of the Maclaurin’s series there must occur, some error. This error part of
the series is known as “Remainder”. The remainder of the Maclaurin’s series is given by:

. n+l

X
R, = f"V(ex) where 0<6<]1
(n+1)!

Thus if a function f(x) is expressed in an infinite series at x = 0, then it can be expressed
as: f(x) = Py(x) + R,(x)

2 3 n
where, P, (x)=1(0)+f'(0)x + ’;—|f"(0)+ %f'(0)+ ot -"—'f“ )
. . n:

is a polynomial of degree n and R (x) is a remainder after (n+ 1) terms.
The remainder R, (x) helps us:
(1) To compute the number of terms

of the series we must lake i a areok b
known. st take if the error is

(1) l'o compute the error if the number of terms of a series are known

Example 03: Find the approxim:
) : Ximate value of ¢ by usi auri i i
by using Maclaurin’s series expansion

of f(x) = e if only 10 terms of the serie
) ! s are taken. Show the validi
¥ Ryt o \ . alidity
by taking the value of ¢ to 27 decimal places from the window calcuI) lOf your results
Solution: We know thal series expansion of e is- ator.
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(n+1)!
Now, f(x) =e* 9 f“””(x):c"-)f‘“*”(ﬁx)=e8"

APPLIEDE CALCULUS
; x? x* x*
e =1+X+-——-+—-—+—-+... (1)
20 3 4
n+l .
The remainderis: R = f®D(0x) where 0<g<]

n+l

Hence, R, =2 e®™) where 0<6<«l1
(n+1)!

Sincex=1,and 0 <g < I, hence x"*'e® . |

Thus Ry~ 1U(n+ 1)

Now if n = 10, then Ry~ 1/11'=
are taken and if we take x = |
0.00000002 (7 dp).

Now take 10 terms of the series (1) and putting x = 1, we get

e=l+1+—]—+l+l+l+l+—]-+l+l-2.718281526 (2)
21 31 41 51 6 71 g 9!
Now the value of € to 27 decimal places (from the window calculator) is

¢ =2.718284590452353602874713527 (3)
This agrees with the above result in (2) to 5 decimal places.
Although our result should have been aceurate to 7 decimal places as is clear from the
value of R,,, the difference between the values of € in equations (2) and (3) is due to the
approximate value of e ™ which we have assumed to be equal to 1 whereas it isn’t.
Taylor’s Series

Unless a function is defined at x. =0 and all of its derivatives also exist at x = O, the
function cannot be represented by a Maclaurin’s series.

0.00000002. This shows that if 10 terms of the series (1)
to find the value of e, there will be an error of about

Functions such as xm,]n X,coL X and cscX cannot be represented by a Maclaurin’s
series. ‘

Let a € R be different from zero and suppose that f(x ) is a function which is represented

within a certain interval by a power series of the form shown below in which C’s are
constants and f(a)= Co - Differentiating term by term with respect to x, we get

f(x)=cy+c,(x—a)+c,(x—a) +cy(x—a) +c,(x—a)’ +ote,(x—a)" +.,
f'(x)=c¢, +2c, (x—a)+3c3 (J\:-:1)2+404 (x—a)3+,__
f7(x)=2lc, +3lc,(x ~a)+4-3c,(x —a ) +...
f7(x)=3"c, +4lc,(x —a)+...

f("_”(x):(n—]) lc,;+nlc, (x—a)+-

Since derivatives of all orders exist at x = a, we get )
: ‘a)f’(a)=2 A ()f'(a)-3'c 5=k @)
f'a)=c, =c, =fla)f"(@)=2c, =¢c, =— =3y ===

2!
f(“'l) a)
f(n-l)(a):(n_l)fcn_r =C, ——-(—

- (n—=1)!""

Thus, the power series becomes

e
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" " (a 3 1 (a n-1
f(x)=f(a)+f (a)(x—a)+ f 2(:1)()( —a) ol 3(! )(x—a) +..t f(n_l()!)(x—a)

This is called the ‘Taylor’s series.’
development of f (x) in powers of (x —a)- The remainder is
n+l :
_(X=3)  ¢G+)(y +0x) where 0<B<I

" (n+1)!

ylor's series can be obtained if we rep
n-1

It is also known as the series expansion or

Another useful form of Ta lace x by a + h that is;

f(a+h)="f(a)+hf @)+ Dz—sz’(a)+%;f'(a)+...+ (:_ l)f(“")(a)..

aclaurin’s expansion if a = 0.

nsion reduce to M

ial case of Taylor's series.

Thus Maclaurin's series becomes a Spec
lopment of the following function f(x) = In x at

Example 04: Obtain the Taylor’s deve
a=1up to 5 terms. Also compute In 2.

Solution: Given that
f(x)=Inx = f(a):f(l)=ln(l):0.f'(x):%::» t@)=r)=1/1=1

f'(x)=-xiz o 1"(a)=1"()=-1F"(x)= xl @)= £7(1)=2

-6
f(d)(x)= —= I'“)(a)= l'“)(l)z —6....The Taylor’s series is:
X

f(x)="f(a)+fa)x=a)+ f‘;(:l)(x —a) +E:§1—)(x —a) +%(a—)(x —a)' +...

Substituting a = |, we get
f(X).=f(1)+f’(1X;';—1)+%('1)(x_1)2 +f_';fl_)(x_])x+f_‘1ﬁ(x_l)4 .
) +(x—lf _(x—l)“‘ +(x_|)5 _ .

lnx=(x—-l)—(x—l
: 2 3 4 s

' x?

Replacing x by x + 1, we get: log(x +1)=x —£+
2 3 4

1 1
At x=1log2)=1-—+-——+...
£() 2 3 4

Example 05: Apply Taylor’s theorem to prove that
. x+h _ X hz hj
() a™" =a [1 +hloga +E(loga)z +?(loga)’ +}
2 3
(i) log(x +h)=logx PR AP S
x 2x? 3’
saw - 2 ’ J
(sii ) Insin(x + h)=Insinx + hcotx APV UL e
2 3

Solution: (i) Let f(x +h)=a"""
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Putting h =0, we have f(x)= at
f'(x)=2a" loga,f"(x)=a" (loga),f"(x)=a*(loga),...

2 3
Hence, f(x+h)=a*" = f(x )+ hf’(x)+b2—'f'(x)+%f'(x)+...

X+

2 R
=a*" =5 +ha"(loga)+%7_ax(10ga)2 +-*;—|a'(10ga)) ..

2 3
2>  f(x+h)=a*" -=a{l + h(loga)+%—'(loga)2 +%'—(loga)‘ +J

(ii) Let f(x +h)= log(x + h)
Putting h = 0, we have f(x)= log x
. L 2
f'(x)=—,f (x)=——2,f (x)==
X X

3 v

X

2 3
Hence, log(x +h)=f(x +h)= f(x)+hf’(x )+ %‘— f7(x)+ %'_f"(x)-fr

=f(x+h)=logx +h(§ ]+.'12_2(_L2\+h_‘(£\+_,

3
) x}6x}

O %
> Iog(x+h):f(x+h)=]ogx+————-,—+——;—...
X 2% 3"
(iii) Let f(x + h)=Insin(x +4).
Putting h = 0 we have f(x )= Insinx -

f'(x)= -_—1—(cns x)=cotx,f"(x)=—csc? X, f7(x)=-2csex(~csex cotx)=2cotxcsc? x,...
sin x

2 . 3
Hence, Insin(x +h)=f(x +h)=t (x)+h’(x)+ %—'f'(x )+ % F7(x )+ ...

2 3

=Insinx + hcot x +B—(~-cs-:2 x)+h—(2c0l x csc? x)+
: z 6

sea

2 3

h )
> lnsin(x+h)=f(x+h)=lnsinx+hcotx ———2~csc‘ x+h?c0txcsc2x—...
/

\ p 5.3 L’HOPITAL’S RULE AND INDETERMINATE FORMS

In the late seventeenth century, John Bernoulli discovered a rule for calculaling limits of
fractions whose numerators and denominators both approached zero. The rule 1s known

today as “L, Hopital’s Rule”, after Guillaume Francois Antoine de L’ Hopital’s (1661-
1704).

an indeterminate form. The L Hopital's Rule enabled ys
to indeterminate forms. There are different indeterminate
X oD, o -, 00, 1”, 0", All these forms are
are undefined, indefinite, unfixed, imprecise,

to evaluate such limits that lead
forms, for example: 0/0, ao/0, ()
called indeterminate quantities because they
uncertain, and vague,
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Indeterminate Form 0/0 e i and if
If f and g are two functions of x which can be expanded by Taylor's series and i

f(x f'(x
f(a)= g(a)=0, then: lim~(—2 = ]im-—,g—) =1
X—a g(x) K—)ﬂg (x) -
provided the latter limit exists, whether finite or infinite.
Proof: By Taylor serics '

f(x): f(a)+ f'(aXx —a)+ f”(a)(x —a)2 + f'(a)(x —-a)q +... (i)

21 3!

Ifweputx—a=h=>x=a+ h, then (i) becomes
TR y
f(a+h)=f(a)+hf’(a)+%f (a)+?f @)+... (ii)

If we assume that h is so small that its square and higher powers arc neglected, we gel.
f(a+h)~ f (a)+hf"(a)
But f(a) = 0, hence: f(a+h)~hf'(a) (ii1)

Similarly, gla+h)~hg'a) (iv)
Dividing (iii) by (iv) and taking limit h tends to zero or x tends to a, we get
f(a+1 hf"(x \ ) P

lim 2 +i1) = limlﬂz lim—,—(——)z |m—,£——)

h—a[Jg(a-{-h) x—a g(x) x=2 hg (‘() x—a g (\)
This proves the result.
REMARK: In case if f *(a) = 0 = g'(a), we continue applying the L Hopital Rule till
some definite value is found.
Example 01: Evaluate the following limits:

b

o\ g NS . et —1
(i) tim Ak (ii) lim ¢ -
=0 x x—0 cosx — 1
Solution: (i) Iimf(x):limx_sinx [9)
x—l) x—=0 X 0

Using L'Hopital's Rule, we get

lim f (i [9]
x—=0 x =0 zx 0

Again using L'Hopital’s Rule, we get
sin X

., : 1
] f(x =| =—h 1 -1Y.
)=y =i ex)=0
(i) lim  (x)= lim =1 [9] :
£ x-=0cosx —1 0 =

Using L'Hopital’s Rule, we get

2

lin Fx)= T 2 [9)

x=0) x—0 —§in X 0
Again using L'Hopital’s Rule, we get

Z{X(zxe‘?)ﬂ‘z(')} 5 g
limf(x)zlimﬁ . 4x“e’ +2e"h 0+2

5 _ =|lim— "~
x —»l) x—l) —COS X alt B _l _2‘

e
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Indeterminate Form oo/oo
If limf(x)=o0 and limg(x )= co, then

X4 X—a
f'(x

. fx . ;
Ilm————( )= llm———, » provided the latter limit exists, whether finite or infinite.
e g(x) = g(x)

Note: While evaluating limf(x)/g(x) when it is of the form /e, care must be taken to
X—a

change over to the form 0/0 as soon as |

tis conveniently possible, otherwise the process
of differentiating the numerator and deno

minator would never terminate.
Example 02: Evaluate lim li(S_m_.’Lr_) -
' x40 In(sinx)

_ - In(sin3 oo

Solution: limf (x)= fim "0M3%) (e
x=0 x=0 In (sm x)
Using L’Hopital’s Rule, we get
|

[=e ]

~(cos3x)(3)

limf (x)=lim sin 3x = 3lim sin X cos 3x 0
x—0 x—0 J_ (COSX) x—0s1n3x COS X 0

sin x
Again using L'Hopital’s Rule, we get
{sin x (=sin3x)(3)+cos 3x (cosx)}
limf (x)=31lim -
x50 x50 {sin3x (=sinx)+cos x (cos 3x)(3)}
— 31im S983X€0s X —3sin 3x sin x _3( I )___1_

x=0 3¢0s 3x cos X —sin 3x sin x 3
Indeterminate Form 0 X «

Let lim f(x)z(),]img(x)=oo- We write

s (2 om) 167201 (2 )

Thus, 0Xeeis changed into the form oo/co or 0/0 and then L’Hopital's Rule is applied
to evaluate such limits.

x—l

. mx
Example 03: Evaluate lim (1 - x) tan 5 |

x—

Solution: lim (l—x)tan(%] (0xc0)

. L-x (0 J
=lim———= i
oot B2
2
Using L’Hopital’s Rule, we get

)= ,(;'x)(nJ=[f)¥m{5‘“z[ﬁf)H%J(‘Ff

—CcsCc™| — =

2 N2
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Indeterminate Form oo — o . _
To evaluate lim{f (x)- g(x)} when lim f(x)=o0= lim g(x), we have

1 l

| | g () (O
liﬂ{f(*)’g(")}z1'2{1/[1(@_li,fg(x)}:lx'ﬂlg‘l__——l# [6 ro”")_

£(x) g(x)

Now, we can apply the L’ Hopital’s Rule.

o gl X 1Y\
Example 04: Evaluate the limit lim S
=1 | x—-1 Inx

X 1
luti : limf =1 —_— oo — oo
Solution: lim (x) :H]'[X-l lnx] ( )

e=ralt

Using L'Hopital's Rule, we get

x(]]ﬂnx—l In x XInx 0
i _ , A
limf (x)=1lim . =lim—————— ( ]

| l l =lim ] s 6
x—r e x- (X —1 )+ 3 x5 (x— X
! '(e-1) ]an(l) (= DA (gt + xdn x
% ] X
Again using L’ Hopital's Rule, we get
x( —]+ In X {1 |
limf(x):hm— i =lim +nx =Tl
x =1 x—l | =1 2+1n X 2
l+x[ : ]+Inx(l)
X

Indeterminate Forms 0", 17, o°

To evaluate liml{f(x )}f(”J when

(i) limf(x)=0=1limg(x). In this case lipll{f (x )}P“’Jis of the form 0°.

X—d X —hil

(i) limf (x) = 1, limg(x) = oo In this case lim|{f (x)E® fis of the form 17

X—ra X

Gii) lim (x) = oo, limg(x) = 0. In this case tim| (x)F* is of the form «°.

X=a

Example 05: Evaluate the following:

@) iin;(taux)“"h (ii ) lim (1 + sinx Y (iii) um(ﬂ :

x=0| x
J
Solution: (i) Let y = (tanx )“"h = lim y = lim (tan x)“"zx (0") i

x=0" x—0

Taking In on both sides, we get
In (lim y) = 1i21‘1){sin 2xIn(tan x)} (0xe0)

x -0

, . In(tanx) o
In (hm y)zhm— (._
x—0 x—0 ¢csc?2x —

Using L'Hopital's Rule, we get
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Lo 2 gosxr L
: . Eiik (Sec x) . sinx (cosz X ]
In (llm y)=hm =i
x50 —csc2xcot2x(2) =0 -2csc2x cot 2x

x—=0
= lim —— l = lim sz)_( anix =lim(-tan2x)=0
=0 -2sin X cos Xxcsc2xcot2x  x—0 —sin2x x=0
or, lim(tan x)""h =e’ =1 [This is done by taking antilog on both sides])

x =0

ii) Let y=(1+sinx)™" = limy = lim (1+sinx )" (1)
(i) Let y=(1+sinx) lim y J(1_1'1‘1]( sinx) ( )
Taking In on both sides, we gel

In (lim y)zlim {cotx]n(1+sin x)} (e2x0)

x=0 x—)
. In(l+sinx 0
= ]lm(—_.) —
x=0  tanx 0
Using L’Hopital’s Rule, we get
—— l & 2
: . {4&inz (cosx) . cos X . cos’ X
In (llm y):hm 228 =lim — , = e = |
x—0 x—0 sec” x v=0sec” x (1+sinx)  x—01+sinx
Thus, “n?)(] +sinx )" =¢' =e. [This is done by taking antilog on both sides]
l tan x - ) I tan x
(iii) Lcly:[—) =>llmy=llﬂ\[*] (m“).
X J x=0 x=01-x Y

Taking In on both sides, we get

' ani_'mOY):liﬁ{‘tanxln(;l]} - (O0x=)

=|imIn X [f)

=0 col x

=lim——" /= lim—2— = [im XX = lim(x{'jm) =(0X1)=0
x=0 —cge” X x=0csc” x x—0 X x— X 4
] Lan x

Thus, linrll[—) =e’=1- [This is done by taking antilog on both sides]

, TRy

' ‘/5.4 APPLICATIONS OF LIMITS (ASYMPTOTES)
In this section we shall show a very useful application of the limits known as
“Asymptotes”. It may be noted that asymptotes help us to draw the graph of a function
without tabulating its values. The asymptotic behavior of any curve is very much
important in engineering and natural sciences. Asymptotes can be defined formally using
the idea of limit in CALCULUS as:
Definition: A straight line L is called an asymptote for a curve C if the distance between
L and C approaches zero as the distance moved along L from some fixed point on L tends
to infinity. There are three types of asymptotes (i) Horizontal asymptote (i1) Vertical
asymptote and (iii) Oblique asymptote. We now discuss how to find these asymptotes.
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i. Horizontal Asymptote
A line y =b is called a horizontal asym
limf(x)=b or

X —poo

ii. Yertical Asymptote
A line x =a is a vertical asymptote of the curve y = f(x) if

lim f(x)=#e0 or lim f(x)=o"

. X—¥d

ptote of the curve y = f(x) if
lim f(x)=b-

X—p—=2

X—rd

REMARK: Horizontal asymptote is parallel to the x-axis and velrlical asymptote is

parallel to the y—axis. .
Example 01: Find the horizontal and vertical asymptotes of the curves defined by

the following equations: x=1 Jr :
Solution: (i) f(x) = 1/(x-1) .:
. Horizontal asymptote :L
. : 1 : ; 1 : _
J}l_lllnf(x)—il_'n;::—o or xl_L)rpmf(x)—lerl;—]—O . = 1 -
It implies that y = 0 (x-axis) is a horizontal asymptote for the given \'
function. .
Vertical asymptote '
lim f(x)= lim . +oo orILimf (x)= lim ZAW\Y,
xolt x=t X =1 x—l" 5 X =l
It implies that x =1 is a vertical asymptote for the given f.
(i) £(x) = (x + 1/x) x:U‘L/,x
Horizontal asymptote Ty =x

1imf(x)=lim(x+l]-—-oo e | »
X—do= X —deoo % /—\

Thus there is no horizontal asymptote for the given curve.
Vertical asymptote

x={) X

Thus x

x—(0
/
=0 (y-axis) is a vertical asymptote fbr the given curve.
REMARK: The graph of this function is shown above. This function has two
asymptotes: the vertical asymptote and the. oblique asymptote. We shall now discuss the
method to find an oblique asymptote.

Oblique asymptote
An asymptote that is neither parallel to x—axis nor parallel to y-axis is said to be an

oblique asymptote. The equation of such asymptote is of the form y = m x + c.
It may be noted that the graph of a rational function has an oblique asymptote if
numerator is of one degree greater than that of the denominator. Consider a rational

function defined by the equation

f(x)=

Here degree of the numerator is one greater than the degree of the denominator.
Let y=mx+c be an oblique asymptote of the curve (1). Then as the curve (1) and the

x?+1

(1)

line y = mx +c coincide while x — o, we have
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2
X“+1] 5
mx+c¢= . =>mx2+cx= x2+l=>(m~l)x2+cx—1=0

2
(m—l)+£-—]2—=0
X x

Dividing by x%, we get.

Since x —> %, 50 we have m

Put this value of m in equation (2) we
Bl CX-1=0=c=]/y *Since X — 0o we get c.= 0. Substituting these values of m and

d oblique asymptote of the curve (1),

» Which is the same curve as given in the above
X :

¢xample where it wag mentioned that f (x)=

X 1S an oblique asymptote of the given
curve,

of the denominator, We can write f (x) = + B (X)
, &(x) g(x)
tp(x) is the oblique asymptote of the graph of the function f(x )/g(x)

2
Example (02: Fingd the oblique asymptote of f(x)= > Id'
x el

Solution: [(x)= x"~l4 = F(x):(x +I)+:—§~]-
X—.

[Students are advised to divide (x* = 4) by (x - 1) and see the result

oblique asymptote for the given curve i o( )

1. It implies that the
X)=x+1.

Example 03: Find all possible asymptotes to the curve y= X +3

X
Solution: Horizontal asymptote
. . CF3_ - x(x+3/x) _ _
limy=lim| 212 |- lim — 77 _ = there is no honizonta) asymptote for the
X = X —pom X X —eo X

given function.
Vertical asymptote

i . [ x*+3 : . .
limy =lim == x=0 is a verlical asymplote for the given curve.
x—=0 X0 X

Oblique és_vmptotc
x"3:3

3 ; ;
= Y S ) sy IS an oblique
X X

Note: When the cquation of the curve ig given in the implicit form f(x, y) =0, then there
is another method to find the horizontal and vertical asymptote for a given function that is
explained in the following example.

Example 04: Find the horizontal
(i) ¥’ -x?y—x—6=¢

asymptote for the given function.

and vertical asymptotes for the following curves:

(ii) (.r—y)2 (xz +y2)—10(x—y)x2 +12y* +2x + y=¢.
Solution: (i) Horizontal asymptote
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Here the term of the highest power of x is x°, put its coefficient equal to zero, that is; 1

=0 which is not possible. It shows that the given curve does not have any horizontal
asymptote.

Vertical asymptote

Hcrc the term of the highest power of y is y, put its coemeenl equal to zero, that is;
-x*=0=x=0- ‘

Thus, x =0 is the vertical asymptote for the given curve.

(ii) Simplifying the given equation

(X—Y)E(XZ +y2)—l()(x—y)x2 +12y* +2x+y=0

9(x2—2xy+y2)(x2 erz)—lO)-;]+IOJ4;2y+l2y2 +2x+y=0

S x* —2xy + xPy? +x?y? - 2xy’ +y* —10x3 + 10x%y + 12y* +2x+y =0

or, x* +y* —(2y +10)x* +(2y* +10y)x> - (2y’ =2)x +12y* +y=0 (1)

Horizontal asymptote

Here the term of the highest power of x is x*, put its coefficient equal to zero, that is; 1=
0 which is not possible. It shows that the given curve does not have any horizontal
asymptote.

Vertical asymptote

Here the term of the highest power of y is y . put its (.ueftluenl equal to zero, thatis; I =

0 which is not possible. It shows that the given curve does not have any vertical
asymptote.

WORKSHEET 05

Verify the Rolle’s Theorem and find ¢ (if possible) for the following functions where
interval for each function is also given,

(1) T(x):x2—3x+2, [l 7] (11) f(x =sin? x, [0 n] (i) f(x) =1 - [-l, 1]

(iv)f(x)=:;; [—l,l](v)f(x)=x(x+3)c- [-3,0] (\l)t(x)—7+(x—~l [02]
(vii)f (x)=x*>—6x+8 [2,4] (viii)f (x)=x"—4x [-2.2] (ix)f(x)=8x=x [0.8]

()f (x)=x> [-L1] (xi)f(x)=sinx [-mn] (xii)f(x)=e* [0.n]
(xm)f(x)*gmx [o.n] (xiv)f (x)=V4-x* [2,2] (xv)f(x)=tanx [0,7]

(xvi) (x)=x>-7x+12 [3,4] (xvi)f (x)=x(x-2)" [0,2]

xvii )f (x)=secx [0,2r] (xviii)f (x)= x*=3x*+3x+2 [1,2]
2. Discuss the applicability of Roll’s Theorem to the function:

F(x)=1IxI,[-1, 1]
3. Find c (if possible) of the Mean Value Theorem for the following functions:

(i)r(x):x3_3x?+3x+2 [1.2] (i)f(x)=x>=7x+12 [3.4] (iii)f (x)=x(x-2)" [0,2]
1113

(iv)f (x)=x" =3x -1 ['_7 —] (VIF(x)=vx=2 [24] (vi)(x)=x"=-5x"+4x-2 [1,3]
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(vii)f (x)=x%¥3 ~1.1] (viii)f(x)zx(x—l)(x—2) I:O,-;—] (ix)f (x)=(x-1)(x-2)(x -3) [0,4]
(x)f (x)=Vx*-4 [2,4] (xi)f (x)=log x [Le] (xii)f (x)=¢" [0.1]
(xiit)f (x)=x-5x2 _3x [1,3] (xiv)f (x)=Vx*-9 [3,4] ¢

4. Find the Maclaurin series of the following functions:
(i) f(x)=sinx (ii) f(x)=cosx (iii) £ (x)=secx
(iv) f(x)=tanx (v) f(x)=ln(l—x) (vi) f(x)=e"

5. Apply Taylor’s Theorem to prove that:

¥ K+ x hz h‘

(i)as" =, l+h|oga+—2—!(loga)2+?i—(loga)3+---}
2 3

(ii) e”“ze"[l+h+b~—+h—-+---] (iii) l

L 3
_—..,_l_|:]_..h_+h1_.h_+...:l
2! 3! X+h x X x° 2
2 3
(i\’)lOg(xfh):ngx+E_L;+_}.l__...

X 2x° 3}

2 3
(V) lnsin(X+h)= lnsinx+h‘c0lx—-b-2—csc2x+%—c0txcsc2 X 4 ee

APPLIEDE CALCULUS

> 3
) h h -
(w) lncos(x+h)= Incos x —h tan x — — gee? x*——{s;e_c2 Xtan x +---

h X h?
(vii) sin™ (x + h)=sin"" x + + T T
. \NE2A (i -x2 )2
(viii) tan™ (x +h)=tan™ x4 D = xh’ e
I+x (l+xj)2
2 2
(ix) sec™ (x +h)=sec™ x + —_N —-h—--——zL——‘F+
xvx? -1 2! xz(n-:2 —l)"

) h®
(x) tan(x +h)= tan x + h sec? x+h?*sec? x tan x+?sec' x(l+3tam2 x)+---
6. Prove the following;

x*-256 . x*=256 L XT=3x |
. 1 = =1 =
(2 lim—=— =256 (b)lim i -2 (o)lim s =7
x 2 X ' 470 \ In(2+x)
im——S 2 (e)lih—S_ - e = g)lim =1
(d){l_rg X—-2 © (_)1$I—ex ( )Hﬂlan2x 2 ( )-'—H X+1
(im0 i € (imE=2 1),
0 cos2x~] 4 x-0  gin x G 2

=0  4x
. 2tan”'x —x
k)lim——"_ %

. Insec2x
—=1(1)lim

=0 2x —sin”' x

x=0 |nsecx
. Incosx 1 . COS2X—cosXx 3 . Inx _
(m)lim —"= = —— (n)lim—=—""2% 2 (0) lim —= =9
50 x 2 x—=0 5in” x 2 Xt

X
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(p) im ;:Zgi 3 )] “5,:(—:321:%:—5 (r) lim :tf:o
.(S)Ji_:)‘fl;:?txx—o ()"“""'4—2&3‘2_’(7_2 (u)li_lpo(c’—l)oosx=l
(V)xl_l’r&x et=0 (w)llmxcscx—l (x)in_rncscrrxlnx——-}c-
: ' .
- - )
2 .

a (42 X 1) 0 (A
(e)?f(;_l—oosx) 3 (f)lun[ X 7;)—0 (g).l:,* 1
(h')[ir(oosx)“‘ =1 (i')l‘ifﬂq(e‘ +3x)'/‘ =¢' j')lh;rr_l(l—c")c‘ -

18 | —

an

(k') lim (smx cosx) - —I (l') lim (L.mx) =1 (m)limx ° =e "
R— e s it 2

-3 »

.
(n') lim (I+|,/x)[ =e (0')Iim§‘— =0 (p’)lim E{’ 2 ()
R L9 o' X

lie) e ()

=lim lim-

1+x)(1=x) =0 (14x) =0 (1-x)
7. Determine the horizontal and vertical asymptotes for the following functions:

(t)y—( ~2) (i) x*y* =12(x-3) (iii)2xy =x"+3

=1

() tim m

o)e* (s 45t —y) =
(v) (X-Y)z(xz+Y2)—10(x—y)x2+12y2+2x+y:0

(vi) x 2y + xy’ +xy+y’ +3x=
8. Find all possible asymptotes of 2xy + 2y =(x-2)°
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present some important applications of derivatives
€rstand how the derivatives are use
6.1 TANGENT A

¥

~”

~ Example 01: Find the equation of

FARKALEET SERIES

APPLIED CALCULUS

CHAPTER ‘ |
SIX FURTHER
APPLICATIONS OF
DERIVATIVES

In this chapter, we shall

d in solving engineering and technical
ND NORMAL :
Definition: A straight |

tangent to the curve y

7 = f(x) at that point.
point P. Equation of the tangent line can b '
Let P(x,, Y1) be any point on the curve y = f(x).
We assume that fis derivable ar p so that f “(x) exists.
At P(x,, Y1) the slope of the tangent is the value of dy/dx
at this point. Let thig value be denoted by m.
Now the tangent at P

is a line through P(x,, Y1) having
slope m is given by:

¥=vi=mxox)

where m=[-qi]
dx ("1'5’1)

This is the equation of tan
Definition;

{using point-slope form )

(1)

gent line to the curve y=f(x)at(x, y)).
The normal to a curve at any

point P(x,, Vi)
point P(x,, y)) perpendicular to the tang

is the straight line through the
ent to the curv
normal is: y -y, = ——]~(x -x,)
m

¢ at that point. Equation of the
[using point-slope form |

Normal Line (2)
Here m is given as above.

tangent and normal
to the curve xy = 10 at (1, 10).

Solution: Equation of curve is: xy =10 ()
and (x,,y)) = (1, 10).
Differentiating (1) with respect to x, we get
XY +y=0=xy =—y= Yy =-y/x
At (1, 10), m=dy /dx ==10/1=-10.
Equation of tangent: y - yi=m(x-x,)

+ Tangent Line
1

Substituting the values, we get: y-10= —10(x-1)=10x +y-20 =
This is the equation of tangent line for the given curve.

: |
Equation of normal: y-vy,

= (X—xl)

m

! > )
Substituting the values, we get: y—l():—jl—o(x—l)rb Xx=10y+99=0
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This is the equation of normal line for the given curve. .
ijamp;le 02: Find the equations of tangent and normal to the curve
X"+ Xy —_ayzz()atxzalz.
Solution: Putting x = /2 in the given equation, we get

@2+ @2) Y —ay' =0 D -2) Y’ =-@2) Dy =@2) Dy=2a.
Hence, points where the tangent and normal are to be found are (a/2, a/2) and
(a/2, -a/2). Now from the given equation, we have f(x, y) = X+ xy? —ay’.

dy 3x2 +y?

> 2 =—
dx fy 2xy —2ay
o 92 2
Al(a/2,a/2),m=+dl:— 3al/2) +(al2) _9
dx 2(a/2)a/2)-2a(al/2)
Hence equation of tangent line is:  (y — a/2) = 2 (x — a/2) > 4x-2y=a
The equation of normal is: (y-a/2)=-1/2 (x -a/2) = 2x + 4y =3a

Similarly the equations of tangent and normal at (a/2, -a/2) are:

4x + 2y =2 and 2x — 4y = 3a respectively.
Example 03: Find the equations of tangent and normal to the curve y = 3x° + 5x
touching the y — axis.
Solution: Equation of curve is: y = Ix? + 5x (1)
Since the curve touches the y-axis, therefore x = 0. Substituting x =0 into (1), we get:
y = 3(0) + 5(0) = 0. Thus the point where the tangent and normal are to be found is
(x1, y1) = (0, 0).. To find these equations we first find the slope of the curve at (0, 0).
Differentiating (1) with respect to x, we get: dy/dx =6x+5
AL(0,0): m=dy/dx =6(0)+5=5
Equation of tangent: y—y, = m(x—x;)
Substituting the values, we get: y—-0=5(x-0)=5x-y=0

This is the equation of the tangent line for the given curve.

|
Equation of normal: y—y, =——(x-x,)
m

- |
Substituting the values, we get: y—-0= -—E(x -0)=>x+5y=0

This is the equation of the normal line for the given curve.

Example 04: Find the points where the tangent is parallel to the x-axis and where it
is parallel to the y-axis for the following curve x* + y* = a’.
]

Solution: Equation of curve is X’+y =a (1)
Differentiating with respect to x, we get
3x° -+—3y2§i:0.—_:wx2 +y29}i=0:> ),rzd—l”;.x2 =;dl:_f_ (2)
dx dx dx dx y?
. ; d}’ x2 -
If the tangent is parallel to x—axis then T =0=>» 0= -—y—z —=x'=0=>x=0-

» 7 a 1 3 ¥ 3
Substituting x = 0 into (1), we get: 0+y =a" = yi=al=y=a-
This shows that the point where the tangent to the given curve is parallel to the x-axis 1s
(0, a). If the tangent 1s parallel to y—axis then its slope is infinity, that is;

dy /dx =eo =dy/dx=—x"/y’ =0 = y=0
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Substituting y = 0 into (1), we gel: X’+0=a'> X'=a'l=x= a-

This shows that the point where the tangent to the given curve is parallel 1o the y-axis is (a, 0).
Example 05: Find the angle of intersection between the curves y* = 4 ax and x* = 4
ay at the point other than (0, 0).

Solution: It may be noted that angle between two curves is the angle between their

tangent lines at the point of their intersection. Now the point of intersection of the given
curves can be found by solving their equations simultaneously.

Given: =4 ax (1)

and X" =4ay (2)
From (2), y = x"/4a. Substituting this in (1) and simplify, we get x = 4a. '
Putting this in (2) gives y = 4a. Hence the point where two curves intersect is (4a, 4a).
Now differentiating (1) w.r.t x, we get

ra (]

dy/dx = 2a/y (3)
Similarly, differentiating (2) w.r.t x, we get

dy/dx = x/2a (4)
At (4a, 4a): Form (3) m, = 12 and  from (4) m; = 3

If 6 is the angle between two tangent lines, then

= 2-1/ 2 3 \
Ty _ _22l2 3723 i \an040.75) = 37°
I+mm, 1+2(1/2) 2 4
Example 06: Find the equation of tangent at any point of the curve x*° + v = a??
Also show that portion of this tangent line between the x and Y axes is always
constant.

i ; . 23 23 < S
Solution: Equation of the curveis x™ + y*? = 3%}, Differentating w.r.t x, we get

113
2 .S : :
:x71.3+gy—|/3_d_}=0 LAy _ (¥
3 3 dx dx X

Thus equation of tangent is: (Y —y)=—(y/ J-;)”J (X-x) (1)
If the tangent line cuts the x-axis then Y =0

D X =x+x" gy e x4 P = x'? 22% (NOTE: x2* + y?* = a2

Thus x-intercept of tangent line is P(x'"* a?>, 0)

If the tangent line cuts the y-axis then X =0 )

DY =y+yxP =y 4 xP) = yP 0¥ (NOTE: x¥° + P = )

Thus y-intercept of tangent line is Q(0, ym um).
Thus portion of the tangent line between the x and y axes is IPQl and is given by using the
distance between two points:

tan B =

IPQI= \/(xmuzn —0)2 +(O— y1/332r3)2 _ Jam (Xm + )’M): \/am_am — \[a_z -
Thus IPQI = a (Constant).
Example 07: Find the equation of normal at any point 0 to the curve

x = a(cos 6 + 0 sin 0), y = a(sin 0 - 0 cos 0)
Verify that these normals touch a circle with its center at the origin and whose
radius is constant.
Solution: First of all let us see that given equation represents which curve. Squaring and
adding both equations and simplifying, we get:  x* + y2 =a’ (1 + 0%)
This is equation of circle centered at origin (0, 0) with radius r=av1+6? . This means
for different values of @ given equations represent family of circles.
For example, if 0 =0, we get: ; X' +y =a’
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if =1, we get: xXt+yi= J2a?, ete.

Now given equations are the parametric equations of curve, hence
dy _dy dx ‘ (1)
dx de do '

2391 =a(cos®—cosO+ Bsin8)=absin®, -:%= a(—sin 9+sinB+6cosB)= aBcos6

Thus .(.1_),_ = ‘—j-x +E§- = Elll-e—
dx d6 do cosB

' 1 L
Now equation of normal is: y =¥ = ——(x—x, ). This gives,
m %

y —a(sin © — 0 cos 8) = - C?SS [x —a(cos B+ O sin 8)]
sin
> 4 ysine—asin29+aﬂsin cos
> xc059+ysinB=a(coszﬂ+sin29)=a.
Thus equation of normal to given curve is: X €0S
Now we know that distance between a straight line ax + by + ¢ =
_lax,; +by, +cl
va?+b?

distance between normal X cos f+ysin0

10.cos0+0.sin6—al

origin (0, 0) is: D= r 29 +5in’ 0
cos” B +sin

This shows that normal touches the circle of radius “a” with ce
Example 08: At what point is the tangent to the curve y =

6=—xcosB+acosze+a93inﬁcose

g+ysinf-a=0
0 and a point (Xi, y1) 1s:

Using this formula, we se¢ that —a=0and the
= a (constant)

nter at (0, 0).
In x parallel to the chord

joining the points (0, 0) and (0, 1).

Solution: The graph of y = In x is shown here. y=|2

Given lhaty:lnxéy‘:]/x:mh K—
This is the slope of tangent line t0 the curve y = In X. >
Now slope of the chord joining the points (0,0) and ' l

(1,0) is mz =(y2 - Y)/(x2 -x))=(1- 0)/(0-0) =
Since tangent and chord are parallel hence their slopes a
3 1/x = o = x = 0. Put this in given equation, we get y =1n 0 =
is (0, -0).
Example 09: Prove that
the given curve €rosses the y-axis.
Solution: Observe that x/a + y/b = 1 is an equation of line with x-intercept equal to "a’
and y-intercept equal to b y= el
It is also given that the curve y = b e cuts the y-axis.
Now on y-axis, X is always zero. Thus putting x =0, we
get: y = b ¢’ = b. Now the slope of given curve is: b
= -be¥/a=-yla=m,.
Given line may be expresses in slope intercept form as:
y = (-b/a) x + b. Thus slope of this line is mz = -b/a. < 2/
Since given line touches the curve hence m; = ma.
> -y/a=-b/a Fy=b, which is true.
Thus given line touches the given curve a

re equal, that is: m; = mo.
-w0. Thus required point

x/a + y/b = 1 touches the curve y =2 ¢ at the point where

t the point where the curve crosses the y-axis.
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Example 10: Show that the sum of the intercepts on the axes of any tangent to the
curve Vx + Vy = Va is constant, '
Solution: Given curve is Vx + \/y = a. Differentiate W.r.t X, we get:

1 a1 ), dy
—X +— — =) e 1
2 7 >y %

Thus equation of tangent line to the given curve is: (Y- y)= —JY/x (X -x)
For x-intercept, put Y = 0 and simplify, we get: © X = Xy + X

For y-intercept, put X =0 and simplify, we get; Y=xy+y
Now sum of the intercepts is:

X+¥=x+y+2fay = (Vx+ 3 ) =(va) =a (constant

Example 11: If the tangent at (x,, y,) to the curve x> + ¥’ = a® meets the curve again
at (xz, ¥2), show that (xp/x,) = (y2/y1)
Solution: Given equation of curve is x> + vy =a’, Differentiating W.r.t X, we get
3x% + 3y y'=0 > ¢ = x*y?
Then slope of tangent at (xy, y;) is: m, = - (x,)zl(y.)
And slope of tangent at (xa, y;) is : mp = - (x;)zf(yg) £
Since the slope at (X1, y1) and (x5, y2) is same, hence m; = m,
P> -x) My = - (x2) yn?t > XDy = (xa(y1) D (xo/x,) = (y2/v1)

(x1y y1) (x2, ¥2)

/\/\

Example 12: Find the equation of a tangent line to the curve y=x"+2x? + 1 where it
is parallel to the liney = 1 — x.
Solution: Differentiate given equation w.r.t x we get: y* = 3x> + 4x. This is the slope

given curve. Let us call it m,. The slope of line y = 1 — x is m» = -1. Since the tangent and
the line a;‘c parallel hence [!1651’ slopes are equal, that is: m, = my. This implies that:
3XT+4x=-1 D I +4x+1=0 P x=-] and x = -1/3.

Put x = -1in the given equation, we get: y = 2. Similarly put x =-1/3 and simplify, we get
Yy = 20/27. Thus there are two point where the tangent to the given curve and the line
y = | —x are parallel and these points are: (-1, 2) and (-1/3, 20/27).

Lengths of Tangent, Normal, Sub-tangent and Sub-Normal

Consider a curve as shown in the adjacent figuré. A
Let P be any point on this curve where the
tangent is drawn which meets the x-axis at T. .
Draw a normal on the tangent at P and produce 9!
it to meet the x-axis at N. Also draw PM
perpendicular on the x-axis. 1y
Then TM is called sub-tangent and MN is 0 | .
called sub-normal. [
Let angle MPT = 0 then angle MPN = 6.
Also ATMP and ANMP are right triangles.
Before we find the lengths of tangent, normal, sub-tangent and sub-normal the following
may be noted.;

Slope of tangent line is m = tan 8 = dy/dx -> Slope of normal is — cot § = - dx/dy

Also cosec’ 0= | - cot’ 0 = | - (dx/dy)? and sec?8 =1+ tan’ 8 = | + (dy/dx)?

(1) From A TMP: sin § = [MPI/IPT| =» |PT| = [MP|/sin 6 = y cosec 0
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Thus length of tangent is:| PT |= yy/1—cot? @ = y\/l —(dx/dy)2

(2) From A NMP: sin 6 = [MP)/|PN| 9 |PN| = [MP}/cos 6 =y sec 8
Thus length of normal is:| PN I= yy/1-tan® 6 = y\} |- (dy/dx )2

(3) From A TMP: cot § = |[TM|/|MPI| =» ITMI = [PMl cot 6 =y cot 0

Thus length of sub-tangent is: ITMI = y(dx/dy)

(4) From A TMN: tan 6 = [MN|/|MP| 2 [MN| = [MP| tan 6 = y tan 6

Thus length of sub-normal is: IMNI = y(dy/dx)

Example 12: For the curve x = a(cos 0 + In tan 6/2), y = a sin 0, prove that length of
tangent is constant. Also find the length of sub-tangent, normal and sub-normal.

.se:czﬂlll =a| -sinB+ !
tan9/2 2 2sin8/2cos06/2

. 1 —sin?0+1 cos’ @
=a|—sinB+ =a - =a
_ sinB sin 0 sin@
2 e
dyziiz_!_d_x: cos BJ:aCOSB.SInB_t'ne

Alsod—yzacose = — acosB+a -
dx do do

Solution: d_x =al| —sinB+
de

acos’®

d
_y=ﬂ+g§:acose+30?5 9=ac059>< s—=tan® and X ot
dx do de sin@ acos” 6 dy

Length of tangent = y,/1—(dx /dy)2 = asin@y1—cot’ B =asinB.cosech =a (const)

Length of sub-tangent = y.(dx/dy) = a sin f.cot6=a sin 6 (cos 6/sin 6) =a cos 8

Length of normal is: yy1 - (dy/dx ) = asin8V1—tan> 6 =asin® secf =atan®
Length of sub-normal is = y(dy/dx) = a sin O.tan 6

6.2 CURVATURE AND RADIUS OF CURVATURE

Let P and Q be two neighboring points on a curve.

Let arc AP =s, and arc AQ =s+8s so thatarc PQ=0s-
Let ‘A’ be a fixed point on the curve from where the
arcs are measured. Let the tangents at P and Q make
angles y and y + & y respectively with X—axis.

In moving from P to Q through a distance ds, the
tangent has turned through the angle 8 y. This is
called total bending or total curvature of the arc PQ.
Therefore, average curvature of the arc PQ = Sy /ds.
The limiting value of average curvature when Q approaches P, is defined as the curvature

of the curve at P.
Thus. the curvature K (kappa) at the point P= lim Sy /s = lim dy/ds=dy/ds-
QP 8s—0

A 4

Radius of curvature
The reciprocal of the curvature of the curve at P (provided this curvature is not zero) is

called the Radius of the Curvature of the curve at P and is usually denoted by a Greek

alphabet p (Rho)- Thus,
1

p=r==
[

ds

=T [Note: Radius is always positive.]
v .
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REMARKS:

I The curvature of a straight line is always zero. Hence the radius of the curvature
of the straight line is infinite (not defined).

ii. The radius of curvature of the circle is simply its radius.
in. Since 8y is measured in radians, the unit of curvature is radian per unit length,

curves are given in different forms. The proofs may be found in any “Text Book” of
Calculus. '

2132
[:H{f’(x)} J
= N §

f"(x)
(2) Implicit equation: If the equation of the curve s given in the implicit form,
f(x, y) =0, then
2 2
)+ ()]

P
P (£, ) =2F, Eefoy + ASIBY

i2

<

(3) Parametric equations: If the equation of the curve Is given in parametric form, that
is; x = f(0), y = g(t), then

[ deop]” |
\ 0 ()¢ ()1 ()

(4) Polar equation of a curve: If the equation of the curve is given in polar form f(r, 0),

22
2[4
do
bk NTAE

2 2 .

a9 ] . d

de d6-
Example 01: Find the radius of curvature of the curve f(x) = x* = §5x — 6 at the point
4, -10).
Solution: The equation of the curve is given in explicit form, that is;

- fix)=x*-5x -6 (1)

Differentiating (1) with respect to x, we get: f’(x)= 2x-5. At (4, -10), f'(x)=3.

then p=

Differentiating with respect (o x again, we get: f“(x)=2-

[] +{f’(x)}l]32 . [H(B)z]J 2

Now, p=(~— "~ J |_ -
ow, p 0 ;

32
10)
( 2) =15.8-

Hence, the radius of curvature of given curve at the given point is 15.8 cm/radian
approximately.
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EX_ample 02: Find the radius of curvature of the curve y = 2% — 6x° + 11x at the
point (1, 7).
Solution: Equation of the curve is given in explicit form, thal is;

f(x)=2x"—6x% +11x (1)
Differentiating (1) with respect to x, we get

f%n=6x142x+n.Atu;n,Fu)=6uf—iun+ll=5
Differentiating again with respect to X, we get

fex)=12x-12.At(1,7), f(x)=12(1)-12=0"

[1+{f’(x)}'2]3/2

Now radius of curvature in explicit formis: p= .__—-F;(—)———
X

Since f **(x) = 0, hence p is undefined. It implies that radius of curvature of the given
curve at the indicated point does not exist. However, the curvature of given curve is zero

radian/cm.

Example 03: Find the radius of curvature at any point of the curve
x=acost,y=asint.

Solution: Equation of the curve is given in parametric form. Now

Differentiating w.r.t t, we get:
f'(t)=-asint, g’(t)=acost, f”(t)=—acost, g”(t)=~—asint

o e OF ]
NoOW, P=ro oy o (). £ (L)
()2 (1)-g'()f (1)

Substituting the values. we gel

. W2 P 32

(-asint)’ +(acost) ] [a2 sin’ t+a’ cos’ []’ (@)
:r—_’_d_’__———“——_—_-—_-_:______———-_—_'_:__—__—z

P |(—-asinl)(—asinl)——(acost)(—acostj ]a: sin” t+a’ cos’ tl a’ !

NOTE: [sinzt +cost=1]
Example 04: For the cycloid x = a(t + sin t), y = a(1 — os t) prove that the radius of

curvature is given byp = 4acos(t/2).
Solution: The given equations X =f(t)=a(l+sin t) and )’=g(t)=a(1~cosn) are
paramelric equations. Hence differentiating twice with respect to t, we gel

f’([)z a(l +COSI),f‘,(l)=-aSin [,g’([):asin[‘g'([)z acost:-

e 1
. [frof £ OF |
oW, P=Trr rr— o (1) £ (0
F(0)gO)-g 0
Substituting the values, we get

32
2 N2y a2 i ¥
[a (I+c05t) +a”sin t] [az(l+2cost+coszl+sin?’t)]j

P= : ,
ja(! +cost)(acost)—asint(=asin 1)1 ~33 cos L+a’cos? t +asin’ l\

I
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a’ (2+2cost)’?  2¥22% (14 cost)”? ;
— ( ) = ( ) = 2J2a\/1+ cos =2ﬁa(ﬁcosl/2)=4acbs(l/2)-

|al2 (l+c0st1 a’ (1+cost)

Example 05: Find the radius of curvature of the curve r = a/(1 + cos 0) at the point
(a, m/2).

Solution: The equation of the curve is given in polar form, that is; r =

- (1)
_ I+cosO
Differentiating (1) with respect to 0, we get
) 8 =ai(l+cose)'l=—-—a-§1n9—2 (2)
d® do{ 1+cos® de (1+cosB)
_ asin(m/2)

|
At (a,— ; EE = 5 =a, {Notc: sinE= l,cosE=0J
2 ) de [a’;') (1+cosm/2) 2 2

Differentiating (2) with respect to8, we get

d’r _ d sin@ || (1+cos6)’ (cos8)-sin®(2)(1+cos8)(—sinB)
@_dﬁ{(l+cose)2 ]“{ (l+c059)4 J
d’r _acosB(1+cosB)+2asin’@

de* (1+cos f:))3

2

S (1eoe?]

n T L
acos; l+cos-2— +2asin” —

=2a-

Now, p= 5 -Substituting the values, we get
de de’
2 3 V2 )
@+ ] ()" Lme e
Ppr== = = ST =3 =2v2a cm/radians.
@) +2)-a(a) Y a

Example 06: Prove that the radius of curvature at the point (2a, 2a) on the curve
X’y = a(x* + y?) is 2a.
Solution: Given function is given in implicit form. Here f(x, y)==ax’+a P = x’y.

Thus: fy = 2ax — 2xy, fy =2ay - x2, fix=2a-2y,
fyy = 2a, fry = -2x.
At (2a,2a): f, =2a(2a) - 2(2a)(2a) = -da’ , f, = 2a(2a) - (2a)’= 0
fex=2a~- 2(2&) =-2a, fyy =2a, fxy . -2(2a) =-4a.

64a°

(R S G A

p: = =
f (fy)z—fof}f“+fn(fx)2 t—Za(O)z—2(—4&2)(0)(—4:1)+(2a)(—4az)2 32a°

=2a
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Circle of Curvature
Let y = f(x) have a continuous derivative in a neighborhood of x = a and a non-zero
second derivative f **(x) at x = a. Then both the curvature k and the radius of curvature p
at the point (a, f(a)) of curve C defined by y = f(x) exit and are non-zero. If f ‘(x) >0,C
is concave up and if f *‘(a) <0 then the curve C is concave down at (a, f(a)). The center
of curvature of C at (a, f(a)) is the point Q on the normal to C at (a, f(a)) on the concave
side of C whose distance from (a, f(a)) is p. The circle of curvature of C at (a, f(a)) is the
circle with center Q and radius p. This circle is also called the Osculating circle of the
curve C at (a, f(a)). The osculating circle has the same tangent as the curve at (a, f(a)).

o N\

Concave Aup Concave down
Definition: Let y = f(x) be twice derivable function with nonzero curvature at a point
P(x, y). Then the coordinates (h, k) of the center of curvature at point P are given
(3 :’- 13 2
J+(y) 1+(y")

by: h=x-y —, k=y+ —
¥ y

Example 07: Find the center of the curvature of the curve defined by y = x* at the
point (1, 1). Also find radius of curvature and equation of Osculating circle.

Solution: Sincey=x" 2y ‘= 3x*andy ** = 6X.
At (L, 1), y‘=3andy “ — 6. Thus coordinates of the center of curvature are:
1+9 Jey) 1198

1 2
.+()‘/.) -3t 4 k=g
y 6 K 6 3

h=x-y
Thus center of the curvature is: (-4, 8/3).

|:I+{f'(x)}2}32 :[H(?})::ly::;l@

Radius of curvature is p =
2 $(X) 6 3

The equation of Osculating circleis: (X - hy’ +(y-k)*=p’

< 2
10 ) >
> (x+4)2+(y—§J :[2—3\/——_} = 3x"+3y" +24x-16y-14=0

\/35.3 MAXIMA AND MINIMA of A FUNCTION of ONE VARIABLE

" Applications of calculus to business, science, and industry are widespread. Our examples
and exercises have been chosen to provide a feeling for how the derivatives can be used
to solve real problems when the situation can be represented by a function.

Given a few guidelines, you will be able to look at the graph of a function and see where
the function is increasing, where it is decreasing and, where it is maximum or minimum.
For example, given a profit function curve, we have to observe when the profit is
maximum/minimum or the profit is increasing or decreasing. Similarly, if we are given
temperature curve against the time, you will be able to look at the graph and sece when a
s being heated or cooled. Learning how to interpret graphs will be an important
lled with practical applications. A study of how derivatives apply to
ble to make many of the same determinations without the use of a

melal i
experience, one fi
graphs will also ena

graph.
Increasing and Decreasing Functions /\/\/

A function is said to be increasing when its graph rises
as it goes from left to right. A function is decreasing when | —>

WEVEN =
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u‘s gr.aph falls as i goes from left to right.

The INCreasing or decreasing concept can be associated with th
The slope of the tangent line to a curve will be positive

g and negative when it is falling,

figure. t

APP

¢ slope of the langent line.
when the curve i rsin

This is shown in the
Since f'(x) is

the slope of the tangent line, it follows
that if f'(x) >

0, then function f is increasing, and if
f(x) <0, then fis decreasing.

Increasing/ Decreasing o o
L. Ata point x = 4 where f(x) is defined (not infinite)

(@) If £'(a) > 0, then f i Increasing at x =g -

(b) If t'(a) <0, then f is decreasing at x =3
2. On an interval where f is defined

@) If £'(x)>0, forall x in

(b) If £'(x) <0, for all x in
Example 01: Consider the
which the function is incre
Solution: Given,
Differentiating (

an interval, then f s increasing on the interval.

an interval, then f is decreasing on the interval
function defined by f(x)
asing and the inte
f(x)=x>—-8x+7

1) with respect to x, we geuAX L) & 208
For f (x) to be increasing: 2x -8 >0 =

=x’ - 8x + 7, find the interval on
rval on which it is decreasing.

(1)
Decreasing Increasing
2B S 4
Thus f(x) is increasing in the interval (4,00).
For [(x) 1o be decreasing: 2x <Q<cO=2 20 < 8= x < 4.
Thus f(x) is decreasing in the interval (—eo:4d) -
Example 02: Let T(x) = -3 x> + 60 x + 70 be the temperature after x seconds of a
metal tray undergoing a chemical finishing process. Determine when the metal
being cooled and heated.

T

Solution: The metal is being cooled when the tem

that a function is decreasing when its deriv
. ; )

decreasing when T'(x )< 0

perature T(x) is decreasing. We know
ative 1s less than zero, that is. Thus T(x) is

Now, T(x)=-3x>+60x + 70, T'(x)=-6x+60-

Hence, —6x+60<0= -6x<-60=x>10-

Thus, the metal is being cooled after 10 seconds. ‘ N
You may observe that the temperature during first 10 ‘sccm?ds of metal tray is increasing,
that 1s; 1 (x)>0 for 0< x <10 and then it stm',ls cooling after l(). seconds. ] .
Example 03: Suppose that P(x) = -0.01 x* + 60 x - 500 is the profit from the

manufacture and sale of x telephones. Is the profit increasing or decreasing when
s 9 .
100 phones have been sold?

Solution: Since, P(x) = - 0.01x” + 60x - S00 , ] ) (1)
Differentiating (1) with respect to x, we get: P (x):—-().()._x +6
When x = 100, we have: P'(100) = -0.02(100) +§0=38 e
Since, P'(100) > 0. this means that profit is increasing when 100 phone sets have been sold.
Jative Maxima and Minima - o
.llflt:.d::::i\ult'::kr:];::nnmn value of a lunqiun 1S th‘-'lul‘gCSIIPOSSIbIC :;{]1:; ?}2:}1;:1?53?}?5
The absolute maximum value of a parll_culm.‘ function may c;)r Ta)lflrc 1 oe he \dcﬁnca -
refative maximum value. Consider the function graphed in the fig A
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S, but the absolute

x in the interval [2, 8]. The relative maximum value of the function is
maximum value of the function is 9.

4
e —A >
v '3:./ ‘6
Fig. 2 :

n the interval [-3, 6].The
absolute maximum value

Fig. 1

Consider next the function graphed in figure 2. , defined for x 1
relative maximum value of the function is 4, and this is also the

of the function. -
i The absolute maximum function value occurs either where there is a relative

maximum or at an endpoint of the interval.
The absolute minimum function value occurs eithe
minimum or at an endpoint of the interval.
Similar drawings and reasoning can be used to present the absolute

il. r where there is a relative
minimum Versus

relative minimum.

Maximum values of y = f(x)
A function f(x) is said to have a relative maximum value f(a) at x = a if f(x) increases

before x = a and decreases after x = a.

Minimum values of y = f(x)
A function f(x) is said to have a relative minimum value f(a) at x = a if f(x) decreases

before x = a and increases after x =a. -

REMARKS: \
(i) Maximum and minimum values are also called extreme values or turning values or

stationary values.
(ii) The points where a function has a maximum or minimum value are called turning

points or stationary points.
(iii) The values at which f’(x) =0, are called stationary values or critical values.

(iv) A point that is neither maximum nor minimum is called point of inflexion or saddle point.
Conditions for maximum and minimum values of a function:

First Derivative Test
(a) f(x) has a maximum value at x = a if f(x) increases before X = a and decreases as x

increases beyond a. Thus, when x is slightly less than a, y increases and
therefore f'(x) is positive. When x is slightly [4x)> 0
greater than a, y decreases and therefore f'(x) is w=0__.

f‘x)<0

negative. Therefore f'(x) changes sign from .

positive to negative as x passes through the value a. l
Hence we have the following two conditions for y = f(x) to have a maximum value f(a) at x = a

(i) f'(x) =0atx =a.
(ii) f'(x) changes sign from positive to negalive as x passes through the value a
(b) f(x) has a minimum value at x = a if f(x) [x)<0 ’ ‘
decreases before x = a and increases as x increases i
beyond a. Thus, when x is slightly less than a, y
decreases and therefore f'(x) is negative. When x is

slightly greater than a, y increases and therefore

v
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f’(x) is positive. Therefore f'(x)changes sign from negative to positive as x passes
through the value a. Hence we have the
minimum value f(a) at x = a.
() f'(x) =0atx=a

(i) f'(x) changes sign from negative to positive as x passes
Second Derivative Test

following two conditions for y = f(x) to have a

through the value a.

(a) As observed in the first derivative test, f(x) has maximum value at x = a if f'(x)

changes sign from positive to negative at x = a. But f(x) is itself a function of x which
changes sign from positive to negative, therefore, it decreases at x = a and hence its
derivative f“(x) is negative at x

= a. Hence a function y = f(x) has a maximum value at
x=aif '
(i) f'(x)=0atx=a
(i) f”(x) is negative at x = a

(b) As has been seen in the first derivative test, f(x) has a minimum value at x =aif f(x)

changes sign from negative to positive at x = a. But f(x) is
g g g p

itself a function of x which
changes

sign from negative to positive, therefore. it increases at x = a and hence its
derivative f”(x) is positive at x = a. Hence a function y
x=aif _

() f'(x)=0atx=a

(i) f(x) is positive at x = a

= f(x) has a minimum value at

REMARKS: (1) Maximum and wminimum values are all stationary values, but the

converse is not true, that is; a stationary value need not be a maximum or minimum
value, because the curve may have a pojnt of inflexion at x = a,

(2) f'(x)=0 at x = a implies that the tangent to the curve y = f(X) at x = a is parallel to the

axis. Therefore at stationary points the ltangent is parallel to x-axis.

Working Rules for Finding the Maximum and Minimum V

alues of y = f(x)
First method:

(i) Find f'(x) and equate it to zero. Solve this equation for real values of x. Let
these values be a, b, c, ...

(ii) Find f”(x).Putx =a, b, c, ... turn by turn.

If £”(x) is negative at x = a, then f(x) is maximum at x = a and the corresponding
maximum value of f(x) is f(a). If f”(x) is positive at x = a, then f(x) is minimum at x = a
and the corresponding minimum value of f(x) is f(a). Similarly for the points x = b, c, ...

@) If f"(x)=0atx=abut f"(x)#0 atx=a, thenx =aisa point of inflexion.
Second method:

Sometimes, the process of finding f”(x) becomes tedious. In such cases, first derivative
test should be preferred.

(i) Find f’(x) and equate it to zero. Solve this equation for real values of x. Let
these valuesbe a, b, c, ...

(i) Consider the value x = a. Study the signs of f’(x) for values of x slightly less
than a and slightly greater than a.

If f'(x) changes sign from positive to negative then f(_x) IS maximum at

x =a. If f(x) changes sign from negative to positive then f(x) is minimum at
X=a.

(iii)
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(iv) If f'(x) does not change sign, then

x = a is a point of inflexion. Similarly for

: the points x =b, c, ...
Example 04: Determine the maximum and minimum values of the function f(x) = x°
—sx*+5x° - 1.
Solution: Given that f(x)=x*—5x*+5x’ -1 (1)
Differentiating (1) with respect Lo x, we get
(2)

f'(J'()=51|("'—2():(34.-]53(2
£(x)=0=> 5x* —20x’ +15x =0= 5x*(x* —4x+3)=0
> xz(xz—xﬂ3x+3)=0:¢xz(x—l)(x—3):0
Thas, the stationary values are x =0, 1, 3.
Difft_ﬂ'cnﬁaiing (2) with respect to x, we get. £(x)=20x" ~60x* +30x (3)
For x =0, £7(0)=0. Therefore, x = 0 gives neither maximum nor minimum value of

-

f(x). Also, £*(x) = 60x> —120x +30.
For x =0 £"(0)=30#0, therefore, x = 0 is a point of inflexion.
For x = 1, f°(1)=20-60+30=—-10<0. thereforc, f(x0 is maximum at x = 1. The

maximum value at x = 1 is: {()=1-5+5-1=0-

For x = 3, f'(3):20(3)1—60(3)‘1 +30(3) =90 > 0, therefore, f(x) 1s minimum at X = 3.
ﬁ\ Phe minimum value at x = 3 is: £(3) = (3)<5@) 503 -1=-28-

S/’Applications of Maxima and Minima
In this section, we shall discuss some of important applications of maxima and minima of

a function f(x) from different areas. It may be noted that the many functions whose
maximum and minimum values ate required are not directly given. These have to be
formed from the given data. If function contains (wo variables, one of them has to be
eliminated with the help of condition imposed on them. .

/ Example 05: MUET, Jamshoro advertises for a short course as per ISO
requirements. The profit from this course is P(x) = -0.02 x* + 120 x + 100 rupees,
whvre x s an amount spent on advertisement. Find the amount to be spent on
gdv-::'tiscx’nent in order to maximize the profit. Also find the maximum profit.

Solutien: We have P(x) = —0.02x” +120x +100 (N
Differ=niigting (1) with respect to x, we get: P'(x) = -0.04x +120 |

New P'(x) =0=-0.04x +120 = 0= x = 3000

Also,  P(x)=-0.04

At x'=3000, P"(3000) = ~0.04 < 0= P(x) is maximum at x = 3000.

Thus profit is maximum if the university spends Rs. 3000 on advertisement, and the

maximum profit is: P(3000) =-0.02 (3000)° +120(3000)+100 = Rs. 180,100

w /aE:mtpl;u?::r ?_wi;::lrnt"ll:er ;IHS : l:qudnlelgr of barbed wire u‘fhic.h he is to fence off three sides of
ectan , the fourth side being bounded by a straight canal, How can the farmer

enclose the largest ficld? X
Solutlen: Let the dimensions of rectangular field be
x and y meters respectively. Then the area

A =xy (1)
According to given conditions, we have y
X$y+y= x+2y =1000 or x =1000-2y
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Put this in (1), we get: A =(1000-2y)(y) = 1000y - 2y* (2)
Differentiating (2) with respect to y, we get

: dA /dy =1000-4y
dA/dy=0=1000-4y =0 = y =250 = x =500
Alxo,d!!\/d_\f2 =—4- Aty =250, we have: d°A / dy’

Now,

=-4<0-

Thus area ‘A" of field is maximum if its dimensions are 500 x 250. Then maximum area
covered is A = Xy = (500) (250) = 125, 000 m*

Example 07: A topless rectan
1296 cubic cm. The material §
for the sides cost Rs.
minimize its cost an

gular box with a square base is having a volume of
or the base costs Rs.3 per square cm and the material

2 per square cm. What dimensions should the box have to
d what is the minimum cost?

Solution: Let the length of the topless rectangular box be x ¢cm, width

be also x cm (since the base is a square) and height be y ¢m. Then a
X-X'y=1296  (using V=Iwh)

or, X’y =1296 1)

Cost of material for the base — 3x°(Rs)

Cost of material for the four sides = 2 (4xy) =8xy (Rs)
Thus total cost of the box is: C = 3x° + 8xy

2 522 1296 > 10368
From (1), y = 1296/x". Thus, C = 3x* +8% R X Oﬁ

. ‘ = (2)
X3 X
This is the function to be minimized. Differentiating (2) with respect to x, we get

LT':(#X~(If)3(18/x3)
For minima. C':l)=6x~(lf1368/.\'3) = 6x' -10368=0 = x=]2

Now, C"=6+(20736/") Atx = 12, we have, C"=1850.

Thus, C is minimam for x = 12. Sub
the required dimensions of the box
be obtained by putting x = 12 in (2) and it will be Rs. 1296/,
Example 08: A manufacturer of storage bins plans to produce some open—top
rectangular boxes with square bases, The volume of each box is to be 100 cubic feet,
Material for the base costs $8 Per square foot, and material for the sides costs $5 per
square foot. Determine the dimensions of the box that will minimize the cost of
malerials,

Solution: Sup

stituting this into equation (1), we get y

= 9. Hence,
are: 12¢m, 12 em and 9

c¢m. The minimum cost will

. X
pose X be the width of the bin. Since the base X d
18 square, the length must also be x. No mform '

ation is given
about the height, so we will use h to represent

it. h
The arca of the base is x X x or i Thus, at $8 per square foot,

ase is 8% dollars. The area of
tour sides is dxh. Sine
per square foot, the cost of the materi
or 20xh dollars. Thus, the total cost C for

the cost of the miterial for the b

Side is x> h, so the area of the
sides 15 $3

cach

e the cost of the material for (he
al for all four sides is S$SSx4xh

all the materials is ol a bin is

C=8x"+20xh dollars (1)
Since, V=xx-bh=V=xh=100=x% (v= 1001°) 3 = 1002
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100

x2

(2)

Now C becomes: C = 8x? +20x[ )::» C=8x%+ 2000

X
Differentiating (1) with respect x, we get: C’ =16x —2000/ x”
For critical values, we have
16x —(2000/ x1)=0=> 16x°=2000=0=x’=125=x=5"

Now, C'=16+40?0-Atx=5weget: C'(5)=I6+%.()).—5=48>0
Sy

X

Thus, C is minimum at x = 5. The value of h can now be found from
h=100/x2=100/25=4

We conclude that the base should be made 5 feet by 5 feet and the height should be 4 feet

in order to minimize the cost. In this case the minimum cost of the box will be C = 600

dollars. [Use equation (2)]

Example 09: A farmer has 1600 feet of fencing to make a rectangular enclosure for his

dogs. What should be the dimensions of the enclosure if he wants the largest area?

Solution: Let x feet and y feet be the length and width of the rectangular pen

respectively. Then perimeter is: x feet
2(x+y)=>1600=2(x+y)=>y=800-x (1)

The area A = xy = x(800 — x) =800 x — x> (2) y feet
Differentiating (2) with respect to x, we get

dA /dx =800-2x
For critical numbers, we have
800-2x=0= x =400
Also, d?A /dx? =2 which is negative.
Thus, area A is maximum when X = 400 feet. Hence, the dimensions of field must
be: x = 400 feet and y = 800—400 =400 feet to have the maximum area. The maximum

" area then will be A = 1600 ft’.
Example 10: A builder decides to fence in a rectangular area of 800 square feet
behind his warehouse, using the wall of the building as one of the four sides (see
figure). What is the least amount of fencing necessary for the other three sides?

Solution: Let x feet and y feet be the width A A
and length of rectangular area respectively.
Then length of fencing
Z=y+X+x=y+2x
or, y=2z-2x (1N
Also, Area = (x)(y)=xy 2)
800 = x(z—2x), from (1)
2 0+2x’
800=xz—2x’:>z:8—0—+-x—=z:2x+-@ (3)
X X
. : dz 800
Differentiating (3) with respect Lo x, we get: E; =2-—
)
For critical numbers, we get
dz 800 2 _ L - g
L op-—5=0=x"=400=x= 20 (~ve sign is not admissible )
dx X
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d’z 1600 d’f 1600 1

Also, — =———-At x =20, we have — — ==>0-
> dx?  x3 dx? - (20)3 5

Thus, z is minimum at x = 20. From (2), we have
A=xy=800=20y=y=40
Hence, the dimensions of fencing are: 40 feet by 20 feet -
Also, fencing =40+ 2(20)=80 feet- Thus, the least amount of fencing required is 80 feet.

Example 11: A storage company wants to create a storage facility by walling in a
rectangular region containing 1728 square feet. It will also use walls to subdivide the
region into five equal storage compartments (see the figure).

¥

X

What should be the width (x) and length (y) of the storage facility in order to use the
least amount of material for the walls?
Solution: The area of rectangular field is: A = xy=1728 (Given).

Therefore, y=1728/x (1)
The perimeter P = 6x + 2y (Since there are five rooms but six walls)

Or,  P=6x+2y=P=6x+2(1728/x) from (1)

Or, P=6x+3456/x (2)
Differentiating (2) with respect to x. we get: P(x)=6-3456/x’ (3)

For critical numbers, we set
P'=0 = 6-3456/x*=0 =x>=576 = x =24
We need to minimize the P. Therefore,
P (x) =6912/x° 4)
When x = 24: P'(24)=6912/(24)* =0.5> 0
Thus, perimeter P is minimum when x = 24 feet = y=1728/24 =72 [From (1)]

Hence, the dimensions of the storage facility in order to use the minimum material for the
walls are: Width =24 feet and Length = 72 feet -

Example 12: Determine the dimensions of a closed rectangular box with a square
base if the volume must be 1000 cubic centimeters and the area of the outside
surface is to be as small as possible.

Solution: Let x be the width of the box. Since the base s square,

the length must also be x. Let h be its width. So, h
V=x-x-h=V=x% (1) 4
5 1000
But V =1000.Thus, 1000=x*h=h =— (2) X
X

Also the surface area is,
S=2Lw+2Lh+2xh=S=2x.x+2x.h+ 2x.h

S=2(x2+2xh):>5=2(x2+2xx£)$) [from (2)]
X

S=2x*+4000/ x (3)
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Differentiating (3) with respect to x, we getg§ =4x — 3(12)9 .
X X

For critical numbers, we set

4000
4x - ~0= 4x> =4000 = x* =1000= x =10
X
2 2
Also, d Sz = 4+M.At x =10, we have 475 . a4 80010 =12>0.
dx % dx’ 10°
Thus, S is minimum when x = 10. From (2), we have h = 1000/100 = 10.

Hence, the dimensions of the closed rectangular box are:

Length=10cm Width = 10 cm Height = 10 cm
Example 13: A square piece of cardboard 40 centimeters by 40 centimeters is used
to make an open box as shown in the figure. A small square is cut from each corner
of the cardboard, and then the sides are folded up. Determine the size of the cut (x
in the figure) that will lead to the box of largest volume. (Note: At some point it may
appear that there are two answers, but only one of them will make sense given the

size of the cardboard.)

X

40 - 2x

Original cardboard Corners cut-out Folded on dotted lines
Solution: It is given that the length and width of the original cardboard is 40 cm. If a
small square is cut from each comer of the cardboard (x in the figure), then length and
width of the cardboard will be (40 — 2x) cm: Thus, the volume of the box, that is; after

folding, is

V = (40 — 2x) (40 = 2x) X, (since x is the height)
3  V=1600x— 160X +4x’ (1)
We need to maximize the volume V. Therefore, differentiating (1) with respect to x, we get

dv 5
— =1600-320x +12x~

dx
For critical numbers, we have

V'=0 =1600-320x +12x* =0= 3x2 —80x+400=0

Using quadratic formula, we have: x =20, 20/3

But we take x =20/3: since x = 20 is not admissible.

. . v
Thus, the size of the cut isx =20/3 cm. Also, —-d*V/ dx? =—-320 + 24x . Put

dx

-

d’Vv
x=20/3, o = -320+24(20/3)=-160<0. Thus, V is greatest when x =20/3.

X 20
x=

Example 14: A metal CAN is to be made in the form of a right circular cylinder that
will contain 167 cubic inches of metal. What radius of the can will requli(re the least
amount of metal (see the figure)? Note that there are three parts- a circular top, 2
circular bottom and the curved side. P
Solution: Volume of cylinder is:

Vv
V=m2h=$h=——:ah=l§—§_—_>h=1§
mr- mr r’ (D

—
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Surface area § =22 +2nth = S=2x| 12 + rxl—g]

, from (1) r/\
r r ]
=>S=2n(r2+]6)

L]

—- 2 o]

2r———?

T

Differentialing (2) with respecttor, we get: §'= 211:[ L J

For critical numbers, we set

16 .
2Tt[2r—-2—]=0:>2r-1—?-=0::>2r3=l6:>r3=8=>r=2-
’ r r-

- -
--------------

We need to minimize the S. Therefore, S* = 2n[2+3—32)=> S'=4n(l +I—6- ]
r r

Whenr=2, S'=4n[l+l6—~]=12n>0-

Thus, S is minimum when radius r =
require the least amount of metal.

Example 15: The out
value of the current |
circuit are 10 volts an

put power P of a battery is given by P = VI -
is the power maximum if ¢t
d 20 ohms respectively?

RI®. For what
he voltage V and resistance R in the

Solution: Since, P=VI-RI?
Using V=10 and R = 20, we get

P=101-20P (1)
Differentiating (1) with respect to 1, we get

dP/dI=V-—2RI=>dP/dI=lO—-40[

For critical numbers, we set 10 - 40] = 0=1=1/4
2 2

P

Also, 9——2P=—40- When [ =1/4, g .

di dl-

I=1/4
Thus, P is maximum when I = 1/4 A. The maximum power of the battery is then

F=101-20F = 10/4 - 20/16 = (40 - 20)/16 = | 25 Watt.
Example 16: A window has the form of rectangle

surmounted by a semi-circle. If the perimeter is 40
ft, find its dimensions so that the greatest amount of
light may be admitted.

Solution: It may be noted that greatest amount

of light is possible when the area of window

is maximum,

Now let us look at the figure and problem concerned.

=—40<0

Let-x be the radius of the semi-circle so that this side of
rectangle is 2x. Let the width of rectangle be y.

The circumference of circle is 2nx hence the circumference of semi-circle is n x.
Therefore the perimeter of entire window is:

2x+y+y+ax =40 (Given)

> Yy =(40 - mx — 2x)/2 (n

[Tt may be noted that central line is not a part of window. It is merely shown to visualize
the center and radius of semi-circle)
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Now the area of entire window is: ‘
A = area of rectangle + area of semi-circle

2 2
e

A=2xy+n:x2/2=2x[

> 4 %=4()—4x-nx
dx

For area to be maximum, dA/dx =0 = 40 — 4x — tx=0 >x=40/(n+4)
Now, d*A/dx? =—4—n, which is negative. Hence, area of window is maximum if we
take x = 40/( n + 4). Putting this in (1) and simplifying, we get: y = 40/( n + 4).
This shows that to admit maximum light the window should be of square shape. In other
words it happens when the radius of semi-circle and with of window are equal.
6.4 DIFFERENTIALS AND THEIR APPLICATIONS '

Let y =f(x) 2> y+Ay=f(x+Ax)

2> Ay =f(x+Ax) - f(x) (1

Here Ax denotes a small change in x and Ay the corresponding change in y.

For example, consider: y= f(x) =x2+2

If x changes from 1 to 1.1, then corresporiding/exact change in the value of y is given by
Ay=[(1+0.)=F()=£ (1L1)=F (1)=(1.1] +2- (1) ~2=0 2

Now %:f'(x) = dy = f’(x)dx

Il we suppose that dx = Ax then dy = {(x) dx will give an approximate change in y. Here
dx is called differential of x and the differential of y. wntten dy, is the product of f(x)
and dx. For example if y = x* + 2 and x changes from 1 to 1.1 then approximate change
inyis: dy =(2x +0) dx =2(10(.2) = 0.2

This is approximately equal to 0.21, the exact change in vy
differentials are useful to obtain approximate change in the dependent variable if the

Nalue'of independent variable and change in it are known.
/ Example 01: The radius r of a circle increases from 10 cm to 10.1 ¢m. Estimate the

| approximate change in its area. Compare this with the true change.
“Solution: The area of circle is given by A=m

Using differcntials, we get
dA =m(2r)dr = dA = 2nrdr ‘

Substituting the values, we get
dA =27(10m)(0.1m)= dA = 21 cm?

as shown above. Thus.

dr=0.1 cm

The true change is

AA =m(10.1) = (10)* = (102.01 - 100) T =201t =21+ 0.017 cm?
Thus, approximate error in-the computation of area of circle is 0.017x cm?,
Example 02: The radius of a sphere is found by measurement to be 10.5cm with a
possible error of 0.1cm. Find the possible error in its surface area and volume,
Solution: Let r, S and V be the radius, surface area and volume of the given sphere
respectively. Then: S=4n* (N
and V=4m'/3 : 2)
Using differentials, (1) becomes
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dS = 4m(2r)dr = 8 rdr
Substituting the values, we get

dS=8m(10.5cm)(0.1cm) =8 47 cm?

- This is an approximate error in surface area of sphere.
Now using differentials, (2) becomes

dv = cm(:sr2 )dr/3 = 4mrldr

Substituting the values, we get:  dV = 4r (10.5¢m)* (0. lem)=44.Incm®

Thus an approximate error in the volume of sphere =V —dV = 1500 t cm?.

Example 03: A spherical balloon has radius 10 units. Show that the percentage
increase in its volume is approximately 0.3units, if its radius increases (.1 percent.
Solution: Let r and V be the radius and volume of the spherical balloon respectively.
Then, V=4nr'/3 (1)

Using differentials, (1) becomes: dv = 4;:(31-2 )dr /3=dnr’dr

Substituting the given values, we get

dV =4(3.14)(10) (0.01) (uslng dr=0.1% ofrZO.I[J—)(IO):O.UlJ

100
2 dV =12.56 unit’
\Y 2 37 b8
Percentage error: £ x100% = —Lr—]—"iﬁb‘_x L00% = '—ﬁéh—%- x100% =0.3% -
3(3.|4)(10)‘ 12560

This shows that percentage increase in the volume of the spherical balloon is 0.39

Example 04: Use differentials o approximate the change in volume of 3 Sphere
shaped tumor when its radius increases from 1 to 1.1 cm. .

Solution: The volume of sphere is: -~V =4m?) 3

AV =4n(3r )dr /3 = 4ne’de
dV'=4(3.14)(1) (0.1)=1.256cm’
Thus, approximately the change in voly
Example 05: A fast food re
radius of 1.5 inches. The v
cubic inches. Ordinarily, the rest:

instead the restaurant decides to fill the cup to a height of 7.5 inches only. Use
differcntials to approximate the number of cubic inches of soft drin

k
e T e
the restaurant saves on cach serving. —
Solution: Since V =225rh (1)

()
Using differentials, (1) becomes:

Substituting the values, we get:

me of the sphere-shaped wmor is [.256cm’
Staurant serves soft drinks in cylindrical cup that hag a

this cup can hold is V=225h

Using differentials, ( I) becomes: (Vv = 2.25ndh
Substituting the g

=00

iven values, we get
dV=2.25(3.14)(-0.5)=-3.53 in*
Here, negative sign shows the decre
number of cubic inches of the soft drink the restaurant SAVES on cach serving is 3.53 in’.
Example 06: Leaking sand forms a conical pile in which the height is always twice the

radius (h = 2r). Consider the moment at which the radius is 9¢m. Use differentials to
determine the approximate change in the volume when the radiyg changes by 0.1 cm.

ECIRYiR-.

ase in capacity of (he cup. Hence, approximately the
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Solution: The volume of cone is V=nr’h/3 (1
Itis given that the height is twice the radius, therefore h = 2r
> V=m?(2r)/3 = V=2nr'/3 (2)

Using differentials, (2) becomes
dV =2n(3r* )dr /3= 2mr¥dr

Substituting the values, we get: dV = 2(3.]4)(9)2 (0.1)=50.868 cm’
Hence, the approximate change in the volume of the comical pile is 50.868 cm’.

WORKSHEET 06

1. Find the equations of tangent and normal to the curves (a) x> —-xy+y* =7 at the point
(-1,2) (b) y(x =2) (x = 3) =x + 7 =0 at the point where it cuts the x-axis.
2. Find the two points where the curve x2+ Xy+y” =7 crosses the x — axis, and show

that the tangents to the curve at these points are parallel. What is the common slope of
these tangents?

-3. At what points of the curve y=2x-3x>=2x+4 are the tangents parallel to the line

10X —y+7 =07 Find the equation of the normal at each of these points. Also find the

angle between the two curves: x* — y> = a¥and x* ¥ yi=a’\2.

4. Find the angle between two curves: x* — y? = a” and x* + y2 = V2 a’

5. Show that parabolas y* = 4ax and 2x” = ay intersect at an angle tan"'(3/5).

6. Prove that curves x*/a* + y/b* = 1 and x¥/c? + y*/d* = 1 will cut orthogonally if

a-b=c-d.

7. Find the length of tangent, normal, sub-tangent and sub-normal to the curve:
X=a(t+sint),y=a(l —cost)

8. For the curve x = a cos’ 0, y = a sin® 0, show that length of tangent is y cosec 0. Also

find the length of sub-tangent, normal and sub-normal.

9. For the curve x = a(In cot 6/2 — cos 0), y = a sin 0, find the lengths of subtangent and
sub-normal at the point 6 = /4

10. Find the radius of curvature at the given point of each of the following curves:
(i) y=x*-5x-6; (4,-10) (i) 9x” +16y? =180; (2,3)

. 3a 3
(iii) y=secx; - (E,Z] (iv) x*+y’ =3axy; (ii)

3 2 2
11. Find the radius of curvature of the given curve at the specified point:

(i) r=4sin26; [2.%1’:) (ii) r=asec26; (a,0),2>0

12. Find the equation of the osculating circle to the curve y = In x at the point (1, 0).
13. Find the equation of the osculating circle to the curve x*/4-y?/9=1 at the point
(-2, 0).

14. A tennis ball thrown straight up is —16t> +96t+7 feet above the ground after t
seconds. How high will the ball go?
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\/ 15. The sum of two positive numbers is
two numbers? (Hint:
number?)

16. A farmer has 1600 feet of fencin

should be the dimensions of the pen if he wants the largest area?

\./17. What is the smallest amount of fencing that can be used to enclose a

garden.having an area of 900 square feet?

APPLIED CALCULUS

100. If their product is a maximum, what are the
Let one number be x. What expression represents the other

g o make a rectangular pen for his hogs. What

rectangular

. An open rectangular box (that is, a box with no top) with a capacity of 36,000 cubic

inches is needed. If the box must be twice as long as it i

require the least material? :

s wide, what dimensions would

» 2% 19. A builder plans to construct a gutter from a long sheet of metal by making two folds
of equal size (see the figure). The folds are made to create perpendicular sides.

Sheet of metal —

S —

-

-

— —

A e

o —

Ahe~metal is 28 centimeters wide and 500 centimeters long. How. much (x) should be

turned|up for each side in order for the gutter to hold the most water?

%20. Détermine the dimensions of the smallest size (that is, smallest area) rectangular
' piecg’of paper that satisfies all of the following conditions:
,~~¢&)"You can print 50 square inches of material on it (the shaded area in the fig).

(b) There will be 2 — inch margins on the top and bottom.

(c) There will be | — inch margins on the sides.

21. A gardener wishes to fence in a rectangular area of
1728 square feet. He also wants to‘insert a fence that
will divide the area into two rectangular sub areas.

The drawing shows that some fencing costs $4 per foot

and some costs $2 per foot. Find the dimensions that will minimize the cost of the

fencing. $4 per foot

$2 82

$2 pe r foot

22. A wire 50 centimeters long is cut into [wo pieces. One piece (call its length x) will be
bent to form a square. The other piece (of length 50 - v ) will be bent to form a circle. How
much wire should be used for the square if the total area (square plus circle) is to be the

smallest possible?

i ! H
B ':':‘.-'.-'—-":,3
i: .':{ FH | !

23. Test the curve y = x* for point of inflexion.

I
<,

S

24. Find a and b if the function f(x) = a/x + bx such that f(2) = | possesses extreme point
at x =2.1Is (2, 1) a point of minima or maxima?. Confirm it by drawing the graph.

m

25. Show that function f(x) = sin

x cos" X attains a maximum when x = lan"(mfn)

141


http://www.itwebister.com

APPLIED CALCULUS

FARKALEET SERIES
ircraft traveling horizontally with velocity v feet

26. The horse power developed by an al .
per second is given by H= aw?/v + bv, where a,b, w are constants. For what value of v is

the horse power H is maximum? _ _
27. The velocity of waves of wave length A on deep water 1S proportional to
JA/a+a/\, where aia some constant. Prove that the velocity is ma:;imum when A = a.

28. In a submarine telegraph cable, the speed of signaling varies as X In(1/x), ?vhere'x is
the ratio of radius of the core to that of the covering. Show that greatest speed 15 attained

when x is 1/ Je.
29. The efficiency e of a screw jack is given by e =tan x/tan(x + a), where a is a constant.
Find x if this efficiency is to be maximum. Also find the maximum efficiency.
30. Show that all the rectangles of given area, the square has the least parameter.
31. Find the rectangle of greatest perimeter that can be inscribed in a circle of radius a.
32. After t hours, the number of bacteria in a laboratory culture id given by n = 6t> + 200.
Use differentials to approximate the change in the number of bacteria when t changes
m 5 hours to 5 hours and 3 minutes.
- /33. Use differentials to approximate the change in volume of 2 sphere — shaped tumor

= 4/31tr3) when its radius increases from 1 to 1.1 centimeters.
4. Leaking sand forms a conical pile in which the height is always thrice the radius

(h = 3r). Consider the moment when the radius is 9cm. Use differentials to determine the
approximate change in the volume when the radius changes by 1%, and volume of the
cone is given by V = mrh/3.
j. A fast food restaurant serves soft drinks in a cylindrical cup that has a radius of 1.5
' inches. The volume of soft drink that this cup can hold is given by V = nr’h . Ordinarily,
the restaurant fills up to a height of 7.8 inches. Suppose that instead the restaurant decides
to fill the cup to a height of 8inches. Use differentials to approximate the number of cubic
inches of soft drink the restaurant spend on each serving.
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CHAPTER CALCULUS OF
SEVEN SEVERAL
VARIABLES

7.1 INTRODUCTION

The idea of several variables was introduced in Chapter 4. The concept of partial
derivatives of first and higher derivatives was also discussed.
In this'chapter, we shall study other properties of partial derivatives such as homogeneous
function and Euler’s Theorem such as differentials, extreme values in two variables.

.~ Homogeneous Functions

A function f(x, y) is called a homogeneous function of degree n if it can be expressed in
the form f(x, A y)=X" f(x, y). For instance,

¥ i3
1. Consider f(x,y):x ry . Replacing x by h x and y by A y, we get
X=y
3.3 3.3 A_] x3+y3 3 3
f(xx,xy)J" Y ( )=:a_1" Y A (xy)
AX —Ay A(x=Y) X —Y .
Thus, f(x, y) is a homogeneous function of degree 2.
2.Lctf(x.y):i+§l+cos\[£+]nx~lny.
y 4x X
Replacing x by A x and y by A y, we get
Ax 3 Ay ’?.y x 3y y
AX,Ay)=—+=—+ 22 4InAx—InAy=—+—=—+cos Z +Ink+Inx=InA-In
i y) Ay 4Ax O 5 y 4x X J

f(lx.ly)=%+%%+cos %an—lny:f(x,y):l“f (x.y)

Thus, f(x, y) is a homogeneous function of degree 0.
Jy+x
y+X
Replacing x by A X and y by .y, we get
. -
\ﬁ"_)—"+\/l—x _ \/—(‘/;+J;) V2 x/;+\/; A2 (x.y)-

f(Axihy)= Ay +Ax A(y+x) B y+x

Thus, [(x, y) is a homogeneous function of degree —1/2-

3. Let f(x,y)=

1,0
4. Let f(x,y)zsin X_*+Y¥ . This function is not homogeneous. However, if we let
X-Y
Yry’ x +
f(x.y)*-sin Xty =u —sin"'u= y =7
Xx=Y X-y

Replacing x by Ax and y by Ly, we gel
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3,3 .
A3x3 A%y Af’(x +y ) 2[x3+y.J ,
=g(Ax,Ay) = = =0 ——— [=A"g(x,y)-
z=g(AxAy) AXx —Ay A(x-y) X-y

Therefore, z = g(x, y) is a homogeneous function.

Xx+y

S.Let f(x,y)=Inx-Iny+ .
(x,y)=Inx-Iny y

Replacing x by Ax and y by Ay, we get

Alx+
f[lx,ky)=lnlx-—lnly+;"x+ly =lnl+lnx—lnl—lny+(—)ﬂ

, x—Ay A(x-y)
f(lx,?«.y)=lnx—1ny+m=f(x,y)=l°f(x,y)-
X—Y

Thus, f(x, y) is a homogeneous function of degree 0.
Definition: If f (x, y) is a homogeneous function of degree n, it can be expressed as:
f(Ax,Ay)=A"g(y/x)

: x3+y?
For example, consider the function f(x,y) = :

X—=Yy

which is a homogeneous function
of degree 2. Now

3 3 3 3 > ’ 3
ik, =t L Ul )=ng[1) s g(i):(1+()/x) )
X=y x(1+y/x) X

7 X (I+y/x)
7.2 EULER’S THEOREM
Statement: If u = f(x, y) is a homogeneous function of degree n, in x and vy,
thenxa—u+ya—u=nu.
ox ~ dy

Proof: Since u = f(x, y) is a homogeneous function of degree n in x and vy, therefore it

can be expressed as: u= x"f[xj-
X

Differentiating partially with respect to x, we get
a—uznx"_1 -f[l)+x" -f’(ljwa— Ll=nxt o Y +x" L[ -
ox X x ) oxx _ X X 2.
du_ nx"™' -f(lj— x“'zy-f'[l)
ox X X

Multiplying both sides by x, we get

du Yy = Yy du

x—=nx"-f| = |- x"y f| L [ x—=nu-x""y.f| ¥

= U (oG meny f(x) =
Now differentiating u partially w.r.t y, we get

S-or{te (3 )0l

Multiplying both sides by y, we get: yg—u =x""y. f,[y)
y

X
Adding (1) and (2), we obtain: X a_u du = ) [1)+ X! .f’(lj
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Therefore, X du +y u =nu-

ox ° dy
Note: Euler’s Theorem can be extended to homogeneous

function of any number of
variables. Thus, if f(xn":»xp---,xn) be

a homogeneous function of n variables

X X2, X3,.., X, Of degree n, then: x| a—r+x2 of Fuith X a—r=nf
ox, ax, ox,,
Example 01: Verify Euler’s Theorem for the functions
M4, 34
(i) f(x, ¥) = ax’ + bxy + cy? (ii) f(x,y)=x—.,2—+y,7
X + Yy

Solution: (i) We observe that u = f(x, y) is homogeneous function of degree 2 hence by
Eule's Theorem we have to show that x a_u +y du

ox = dy
Now, a—u=2ax+by > xQE=2ax2+bxy (1
ox ox
au du 2
Also, — =2bx +2cy = y— =2bxy+2cy (2)
dy ax

Adding (1) and (2), we get: x @ + ygll =2ax’ + 2bxy +2cy’ =2
dx " dy
- This verifies Euler’s Theorem.

b bl
(ux' +bxy+cy') =2u

(ii) We observe that u = f(x, y) is homogencous function of degree (3/4 - 1/2) =1/4. hence by

Euler’'s Th h t ‘h)\v[hatx-a-—L[+ a—u:-l—u
uler’'s Theorem we have to she = yay >
. e ) (xm +y”3)(3/4 x—l!d)_(xmm+ym‘)(”2x-m)
o ox 12, u2)\?
(x"*+y"2)
u (XI!2+},IIZ)(3/4 xJH)_(XIEH +),3.’4)(]/ 2!(”3) "
? xéu;_ (xm+y”1)2
e a_u:(x”z+y”2)(3/4 y'”“)*(x”“+y3“)(l/2y'm)
' ay (x”2+y'”2)2
a0 (x1f1+ylgz)(3,4 )__3;4)_()(13/4+y3f4)(”2),uz) o
» ya_xz (xlf2+y1f2)2

Adding (1) and (2), we get:
e , _aﬁ (3/4)[()(3”+y3“)(x”2+y“2)}—(ll2)|:(x3“+y3”)(x”2+y”2)i|

x5; dy (xuz +yuz)2

2

= =

(xlf.'! + yl!! )'

3 3
(x‘“+y'“

|-
—

5

+

.<—

o
N ——

=N
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This verifies Euler's Theorem.

3 3 a
Example 02: If u =tan 4.0 3 show that .r——+y—li=sm2u
ox " dy

X +y
L

Solution: Given that:u = tan” ( }D tanu =

)
s I+(y/x

Let z:tanu_x +y X = (y ) :

Yy I-y/x

X
Thus z is a homogeneous Fum.tlon of degree 2 in x and y. Thus by Euler’s theorem we
have: . x—ai+y-a£=2z (n

dx "9y

Substituting the value of z in (1), we get

Xja—(liln u)+y ;‘,(‘”””) =2(tanu)= x(hccz u)[;x

)U} . 2 (au\ "
— |+y(sec’u)| — |=2tanu
(SL )\a}'/"

dx v
3 Jdu  du du du sin 5
See" 1 R—FN =2tanu=>X—+y—=2 Xcos™u
ax T dy x "~ dv  cosu
du  du du du : ; ,
X—+y——=2sinucosu = x~~+} = =\in2u  (using sin28=2sin6cosH)-
dx y
+y? ou du
Example 03: If u -In = 2|, provethat x —+y —=1-
L x+y dx dy
P x2 +y*
Proof: Given Eh TS ]n(—————w ]DC = 2
Xty J X+y
4 2
"- |
s Xl 5
X+ X" I+ (y x)
Let z=e*=— ==X ————
X+y v 1+
y \((H‘ y X
\ X
Thus z is a homogeneous function of degree 1 in X and y. Thus by Euler's theorem we
ha X oz +y az
ave: AT =7
dx 8y (D

Substituting the value of z in (1), we get

x)(l(eu)'*'}’aﬂ"(eu):e“ = x(c”)[gil-)'*}'(eu)(g_:J:eu

X Y
,,( du du " Ju Ju
or e | X—FYy_— |[=¢C > X—+y—=1-
L dx Ty dox T dy
Example 04: If Inu = [(x + y")fl.’nx + 4y)], show that x gE +y % =2ulnu.
X v
Solution: Let us assume that:z =Inu (1)
z=[(x" + y')(3x + dy)) (2)

g
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From (2) we see that z is a homogeneous function of degree 2. Hence by Euler’s

Theorem: X—+y %2 -2 (3)

Now from (1), ~a—z =l8_u and E)_z:la_u Substituting these values in (3), we get:
X uodx oxX uox

1 du I du du du
X——+y——=21 —+y—=2ulIn
5 yuay nu 9x8x+yay ulnu

o x3+2};+32é show that xa_u+ya_u+z_a—u~=—7lanu

X“+y 42z ox “dy oz
X+2y+3z
8, 8, 8 (1)
X"+y +z
2 u=sin'z = z=sinu (2)
From (1) we observe that z is a homogeneous function of degree -7. Thus by Euler’s

Theorem: xa—z+ya—z:—7z (3)

ox ~ dy

Example 0S: If u =sin

Solution: Let, z=

Now from (2). ﬂi =cosu and e cosu a_u Substituting these in (3), we get
X 0x ay y

u du : o janee
X cosu— +ycosu— =-=7sinu. Dividing by cos u, we get
dx dy

du du  du
X — ¥ +H—=—1tann
ox " dy 0z
Example 06: If U = f(x, y) is a homogeneous function of degree n, prove that
xzf,tx +2xy [y +y2 iy =n(n - 1) f(x, y)
Solution: Since f is a homogeneous function of degree 10, we have
xf,‘+yfy=nf (D
Differentiating (1) with respect to x, we get
Xf + 1, (1) + 3, =nf, =>xf +f +yf =nf (2)
Differentiating (1) with respect to y, we get
xf, + ¥, +f (1)=nf, = xf, +yf +f =nf, (3)
Multiplying (2) by x and (3) by y and adding, we get
X (Xt +fy + ¥, )+ y (X + ¥, +F, )= nxf, +nyf,
b 4 xzt'“ +xf, +xyf,, +xyf,, + ),'21"W +yf, =n (xfx + yfy)
s ttnyle, + Kyl + yzfn_ +(xf¥ L ): n(xfx +yf),)
X*fn +2xYE,, + yzfyy +nf =n(nf)= x*f, +2xyf, + ysz =n’f -nf
or xf,, +2xyf +y3fw =n(n-1)f
7.3 TOTAL DIFFERENTIALS
We have studied the concept of the differentials of a function of one variable. For y = f(x)
the differential was defined as dy = f’(x)dx with dx = Ax and dy = Ay The differential
dy was used to approximate Ay for small change dx in x. We estimated such as the
change in revenue associated with small changes in advertising expenditures and the
change in price that would cause a small change in demand. Similarly, the change in
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volume ol cone may occur due to change i its radius and height. The differential concept
can be extended to functions of two or more variables.
Definition: Let 2 =1 (x.y)- The total differential dz 1s defined as:
. af f)i
dz=1T1_(x.y)dx+1 (x,y)dy or, dz =—-dx -dy
\ ( o ) N ( N ) o ()X a)

where dx = Ax.dy = Ay and dz=Az and Az =1 (x +Ax,y+Ay)=1(x.y):

Example 01: A rectangular plate expands in such a way that its length changes from
10 ¢m to 10.5 ¢cm and its breadth changes from 5 to 5.3 cm. Find the approximate

change in its area.

Solution: Let x and y be the length and breadth dy (R LR e
of the rectangular plate respectively. According
to the question, we have v
x=10cm, dx=05cm, y=5cm and dy=03cm.
Now arca A = x.y. Using total differentials, we get X dx
dA = d—A(I\ d—A-d\ = dA = ydx + xdy
ox 0y

Substituting the values. we get: dA = (5)(0.5)+(10)(0.3)= dA =5 Sem”

This is the required change in the arca ol rectangle plate
Example 02: A manufacturer of paper drinking cups decides to make its standard
cup slightly smaller than before. The cups-are conical and hold volume V = ar-h/3
where r is the radius of the top and his the height (sce figure). If the radius is
changed from 1.5 inches to 1.4 inches, and the height is changed from -I
inches to 3.9 inches, use differentials to approximate the reduction
in volume that results from these changes.

Solution: We have r=1.5mn,dr==-0.1in, h=4in,dh =-0.1in.

.....

and Vo= arth/3 (1)
Usmg total d:l’fcrcnlml\ ) becomes

JdV 1 | I
v =2 e OBV = L2 ) (dr)+ L ne? (dh )= dV = Lar(2hdr+
d S dr s i 3 m(2rh)( x)+3m (dh )=« } r(2hdr +rdh)

Substituting the given values, we get
I . " 4

dV =» (3. 14)(1.5)(2x4x-0.1+1.5x-0.1) = 1.57(-0.8-0.15) = dV = -1 4915-
)

The negative sign ndicates the reduction in volume. Thus. approximately 1.4915 in' volume of
soft drink 15 reduced per cup
Example 03: Approximate the change in the hypotenuse of a right triangle of legs 6 and 8
units. when the shorter leg is increased by 1/2 units, the longer leg is decreased by 1/4 units.
Solution: Lct x and y be the length of shorter and long leg respectively. According to the
conditions, we have

x=06,dx=05 y=8 and y=-025 I
Since. /- =X+ Y (Pvthagorus theorem) (1) B* 7

27 =(6) +(8) = 7 =100 = 7 =10 units

(sing total differentials, (1) gives v=§ -
27ds=2xdy + 2vidy P zde = dy+ v dy

Substituting the values. we gel =
10ds=06(035)+8(-025) =10dz=3-2 A x=6 -
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=dz=1/10 = dz=0.1 unit.

Hence, the approximate change in the hypotenuse is 0. lunit.

[REMARK: ABC is the position of original right triangle and AB*C" s its position
after the changes occur in its sizes.]

/‘7.4 MAXIMA AND MINIMA OF A FUNCTION OF TWO VARIABLES

We began our scarch for extreme values of functions of one variable by finding critical
numbers. Now with functions of two variables, we will seck critical points (a, b) since the
values x and y need 10 be maximized or minimized a function z =f(x, y). The
definition given next is an cxtension of the de
functions of a single variuble.

Critical Point

Let z = f(x, y) be defined at point (a, b). Then (a, b) is a critical point of f(x, y) if
f, (a.b)=0 and f, (a.b)=0" With functions of one variable. the derivative is the slope
of the tangent line. With functions of 1wo var
considered. The partial derivatives f, and f
(a, b) to be a critical point, we nsist that [
two horizontal lines at (a, b) one P
y-uxis.

Example 01: Find the critical points of f(x, y) = 3x* + y?

fintion of critical number in case of

ables, there are 1wo tangent lines to be
are the slopes of these two tangent lines. For
v and fy both be zero at (a, b). There must be
arallel to the x-axis and the other one is parallel to the

= 06X + 2y,
Solution: First, we find the partial derivatives: Fo(x.y)=9x" =361 (x.y)=2y-10-
Next we solve the system of cquations created by sctting

cach partial denvative equal to
zero. In other words, solve the system

9x* ~36=0 (1)
2y-10%0 (2)

Since each equation contains only-one varable, the solution is readily obtained. From the
first equation, we hive x = +2 and from second we have v = S, Thus the cnitical points
are (2, 5) and (-2. 5).

Now we will study the rules to check that whether a crnitical point is maximum or
minimum. A critical point that i1s neither maximum nor minimum is called the saddle
point for z = f(x, y). There is a second derivative test to determine whether a critical point
18 associated with a maximum, minimum or neither,
Second Partial Derivative Test

For z = f(x, y) 1f fi(a, b) = 0 and f,(a, b) = O then consider D = (f.. )(f')_) )—(f“)
evaluated at (a, b). '

" to be

) It <0 and D>0, then (a.b)= is a point of maxima,

() It £, >0 and D>0. then (a.b)=5 15 a pomt of minima.

(in) D <0, then (a,b)= 1s a point of inf lexion.

(iv) D =0, thentest is inconclusive.

The expression (f )(1‘}) )*(I‘\_‘ )2 Is called the discriminator of [ 1t is sometimes easier
to remember the determinant form: (f )(I \:_ )*(I“‘\ )_ = :“ :_“

vy Yy
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‘{/ Example 02: Find the maximum and minimum

functions, if there are any )
(i) f(x, y) =- X +XY-Y 2_2x-2y+3 (i) f(x,y) X +3xy -y +4y-6x+1

values of each of the following

Solution: (i) We have f(x, y)=—x’+xy—y 2_2x-2y+3
2> f(x,y)=-2x+y-2, f,(x.y)=x-2y-2
Now. for extreme values, we must have: f,=1f,=0

>

—2x+ y-2=0 (l)
x-2y-2=0 (2)
Solving (1) and (2), we gel: X = -2, and y = -2. Thus, (-2, 2) is the only critical
point for the given function.

Now, £, =-2f, =-2, fM, =1 and D=(f,)(f, ) (fy)

At(-2,2):  D=(-2)(- 2)-(1)" = .
Thus, D > 0 and f, (-2,-2)=-2<0- Therefore, (-2, 2) is a maximum point for this
function. The maximum functional value is:

((-2,-2) = (2] +(2)(-2)~(2) ~2(2)< () +3 =7
(ii) We have l'(x.y)-x1+‘ix3—) +4dy-6x+1

-

> f_‘(X,y):.?)(+3}'—(),Iy(x,y):3x_2).+4

Now, for extreme values, we must have f = f, =0
2¢x+3v-6=0 l

3 . (1)
‘3);—2_\'4—4:0 (2)

Solving (1) and (2), we get: x = 0 and'y = 2.
Thus. (0. 2) is the only critical point for the given function.

Now, f, =2, =—2andf, =3 and D=(f,)(f,)~(fy)
A( (O» 2) D= fxx (0’2)fyv (0’2)—{fxy (0’2)}2 = (2}(—2)_(3): = _13

Since, D < 0, therefore (0, 2) is a saddle point for the given function.
Example 03: A local company advertises on the radio and in the newspaper. Let x and y
represent the amounts (in thousands of dollars) spent on the radio and newspaper
ad\'ertl.:slng, rcspecftlvcl_v. The company’s profit based on this advertising has been
determined to be (in thousands of dollars) P(x, y) = -2x* - xy — y? + 8x + 9y + 10. How
~much money should the company spend on each type of advertising in order to
maximize the profit?
Solution: We have  P(x,y)=-2x"—xy—y> +8x+9y+10 (n
Differentiating (1) with respect x and with respect to y partially, we get
P (x.y)=—4x-y+8 P (x,y)=—-x-2y+9

Now, for extreme values, we must have Py = Py = 0

—4x-y+8=0 (2)

-X—-2y+9=0 (3)
S.n]ving (2) a_nd (3). wc’j get: x =1 and y = 4. Thus, (1, 4) is the only critical point for the
given profit function. To apply the second partials test, we must evaluate D for the point
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(ll 4)' Here, Pn= ‘4. Pyy = '2, P

At(l, 4y D=(-4)(~2)~(-1)?=7
Thus, D > 0 and Pu(1, 4) <. Therefore (1,

Now (1, 4) implies that the company should spend $]
newspaper tg get a maximumzproﬁt which will be:

APPLIED CALCULUS
——-“——‘___

vy-1 and D'_‘(fu)(fw)_(f‘y)z

4) is maximum point for the given function.

000 on the radio and $4000 on

P(1,4) =-2(1) (@) -@4)?*+ 8(1) +9(,4)+ 10=32

This means if company spends $1000 for radio and $4000 on TV

maximum profit wil] be $32, 000.
L~ Example 04: Find the three
(i) Their sum is 27.

advertisement the

positive numbers that satisfy both of these conditions:

x+y+z=270rz=27—x—y (1)
According to the second condition, we have
F(x,y)=x?+y? 422 ()
Substituting the value of z from (1) into (2), we have
f(x,y)=x?+y? +(27-x-y)* =x%4+y? +(27—x—y)(27—x—y)
_ F(x,y)=2x?+2y? +2Xy =54x - 54y +729 (3)
Differentiating (3) with respect to x and with respect to Y partially, we get
fo(X.y)=dx +2y 54, fdXiy)=4y+2x—54
Now, for extreme values, we must have f, =, =0
4x +2y ?4; 0 (4)
{43{ +2x \54 -—-rO

Solving (4) and (5), we get; x = 9 and y=9. Thus, (9, 9

(5)

) 1s the only critical point for the

function. To apply the second partials test, we must evaluate D for the point (9, 9). Here

) fo =40y =4 £, =2and D=(r,,)(f,,
AL(9,9:  D=(4)(4)-(2)* =12

Thus, D > 0 and f,, > 0. Therefore (9, 9) is the minimum
Substituting x = y = 9 into (1), wehave z=27_-9_9=
Hence, the three required positive humbers are: 9,9, 9.
¢ _~Fxample 05: A rectangular cardboard box (with a t
/‘l:);lme of 27 cubic feet. Find the dimensions that
material used to make the box.
Solution: Let the base of the box be x cm by ycm
and its height be z cm. Then
. Xyz=27=2z=27/xy (D
The surface area S of the box is given by

&7 27 P,
S=2(xy+xz+y2)=2 xy+xxx—y+yx;; =2 x

We need to find the minimum value of S, Therefore

27 27}
y+—+—
y X

)_(f‘.\')2

point for the given function.
9.

op) is being made to contain a
will minimize the amount of
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27 27 54Y 108 54) 108 <
Sx =2(y—;‘2—), Sy =2(X—;{). Su =2(F]=F. Syy =2("’3’J"’ 3| Sxy —'2/

y Y A\ o
For critical points, we set R
7 27 27
S, =0:>2(y—2—-.,,—)=0:> y=27 and S, :0:2[:(——2]=0:>x =
X~ X~ y y
4 4 4
Now, x=——L2=27xx—2-x—:>x—x—=0:>27x—x4=0
(27/x2) 27° 27 27
x(27-x*)=0=27-x’=0, x#0
> x’=27=x=3 e y=27/(3)*=3
Now, D=(S,,)(Sy)—(Sy ) .
108 )( 108 2
Therefore, (3, 3) D=[?](~31—j—(2) =12>0-
Since D>0and S, >0 , therefore S has a minimum value at x =y = 3,
> 2=27/(3x3)=3

Hence, the dimensions of required box should be 3% 3 x 3 ft’.

WORKSHEET 07
\ﬁ. Verify the following using Euler’s Theorem:
' . " J d
() 1f u=sin™' i+tan : —y—, prove that xﬂ+y—u =0
y X ax " ady
dJ
(i) If u=sin"' XXy , prove that x a—u+ yhE :l tanu
JX+y dx “dy 2
X7y d
(i) If u =sin™' X . prove that x = + yng =tanu
X+y Jx  dy
1_3
(iv) If u=sec™ s . show that x a—u+ y211 =2cotu,
X+y ox = dy
(v) If u=cos™' S:le5. du du :

,prove that X —+y—=—_cotu
Jx+y dx “dy 2

-

(vi) If u=1In (xz + Xy + yz) , prove that xa_u_,_ y du

ok

X " ady
2. The area of a triangle is given by A = %absin C.Whena=

30°, find

(a) The rate of change of A with respect 10 a, when b and C are constant.

(b) The rate of change of A with respect to b, when a and C are constant.

(c) The rate of change of A with respect to C, when a and b are constant.

3. Determine whether or not the following functions satisfy the Laplace equation
2au+Zy=0

(1) z=e"cosy (“)Y:lz(c“?)

20em, b =30 ¢cm and ZC=

(lll) Z:xz_yl
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4. In a certain electrostatic field, the potential is u ={( R 1)2 +v? +(Z ¥ 2)2} Find the rate

of change of u in the positive x, y, and z directions, respectively, at the point (2,-2. -4).
5. If resistors of R\, R, and R, ohms are connected in parallel to make an R ohm resistpr, the
value of R can be found from the equation: 4 = 1 e 1 4 1

Find the value of dR /dR 5, where R, =20,R, =35, and R;:SO-

6. A thin metal plate is being heated in such a way that the temperature T at any point
y) on the surface of the plate is given by: T (x, y)=350- x% - y2 degrees
where x and y are measured in centimeters. What is the temperature at the origin?
(a) On the basis of the function T, why will the temperature be greatest at the origin?
(b) Determine the rate of change of temperature with respect to distance at the point (10, 6)
assuming x can vary and y is held constant? .
(c) Determine the rate of change of temperature with respect to distance at the point (10, 6)
assuming y can vary and x is held constant.
(d) Explain why the rates of change in parts (c) and (d) are negative.
7. Concern about body heat loss led to the development of a formula for measuring the surface
area S of a person’s body on the basis of the individual’s weight w in kilograms and height h in
centimeters: S(w,h) = 0D gy 9B 72

(x,

(a) Determine S(80, 178) (b) Find S, (w,h) and S, (w,h)
(c) Find S (w, h)and S, (w, h) at (80,178) (d) Explain the meaning of S, and S,

L8 Find the approximate change in the hypotenuse of a right triangle of legs 6 and 8 inches when
the shorter leg is extended by 1/4 inch and the longer leg is condensed by 1/8 inch.
9. The dimensions of a rectangular block of wood were found to be 10, 12, and 20 inches, with a
possible error of 0.05 in each of the measurements. Find (approximately) the greatest error in the
surface area of the block and the percentage error in the area caused by errors in the individual
measurements.
10. Two sides of a triangle were measured as 150 ft and 200 ft, and the included angle is of 60°-
If the possible errors are 0.2ft in measuring the sides and 1°= /180 in the angle, what
is the greatest possible error in the computed area?
\/l 1. The altitude of a right circular cone is 15 inches and is increasing at 0.2 in/min. The radius of
the base is 10 inches and is decreasing at 0.3 in/min. How fast is the volume changing?
12. At a certain instant the radius of a right circular cylinder 1s 6 inches and is increasing at the rate 0.2
in/sec while the altitude is 8 inches and is decreasing at the rate 0.4 in/sec. Find the time rate of
change (a) of the volume and (b) of the surface, at that instant.
13. Divide 120 into three non — negative parts such that the sum of their products taken two at a time
is 2 maximum. ) .
14. Show that a rectangular parallelepiped of maximum volume V with constant surface area S is a
cube. _
i 'y/ﬁ\ rectangular box, open at the top, is to have a \'olu‘me of 32 cubic centimeters. Find the
Aimensions of the box requiring least material for its construction.
< ¥6. A manufacturer of aquarium wants Lo make a large rectangular box — shaped aquarium that will ~ *
" hold 64 ft* of water. If the material for the base costs $20 per square foot and the matenial for the
sides cosls $10 per square foot, find the dimensions for which the cost of the materials will be the
¢ least
-« 17. An open rectangular box is being made to contain a volume of 108 cubic feet. Find the dimensions
that will minimize the amount of material used to make the box.
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CHAPTER
EIGHT INDEFINITE
INTEGRATION

8.1 INTRODUCTION
Readers are aware of the fact that there are two branches of calculus. They are Differential
Calculus and Integral Calculus. In differential calculus we begin with a function f(x) and
obtain its derivative f’(x). Interpreting f'(x) as a rate of change of f(x) led to a variety of
applications. By contrast, there are situations in which we know the rate of change and seek
the function f(x). We need to be able to reverse the differentiation process in such cases. In
other words, in differential calculus we are given a function and we are required to find its
derivative, while in integral calculus we are required to find the function whose derivative is
given. This process is depicted as under:
Differentiation process
f(x) _»f(x) = F(x)
Anti derivative/Integration process
f(x) * f(x) = F(x)

Thus integration is also known as anti-derivative. For example, if

Derivative of (x°) = 3 x* = anti-derivative of (3 x°y=x".
Definition: If F(x) is a differentiable function such that di F(x)=f(x) then F(x) is called an
X ,
integral or anti-derivative of f(x) and we wrile: J.f(x)dx = F(x)
Integration: The process of finding the integral of a function is called integration.
Integrand: The function to be integrated is called integrand. For example, if
If(x)dx': F(x) then f(x) is the integrand.

Integral sign: The symbol I " is called integral sign and is used to represent the process
of integration. This symbol was first introduced by Leibniz. '
__“Constant of Integration and Indefinite Integral

d d . d
Let —F(x)=f — —|F =f(x). because —(c)=
= (x)=f(x) dx[ (x)+c]=f(x). because dx(C) 0.

Therefore, jf(x)dx =F(x)+c¢
The arbitrary constant ‘c’ is called the constant of integration. It may be noted that
If(x)dx is called indefinite integration.

/Properties of Indefinite Integrals

If f(x) and g(x) are any functions of the variable x, then following properties are always true.

M [[feoxeoldx= ) de fe dx G [kfede=k[f(x) dx

provided the anti-derivatives of f(x) and g(x) exist.

Table of Integrals of Elementary Functions

As discussed above the integration is reverse process of differentiation. We list now the
integration of elementary functions showing both process of differentiation and anti-
differentiation. It may be noted that after integration process is over we always add constant .
of integration.
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/d
o L™=l :>j'1.dx =x+c

2. If k is any constant then I k dx = k_[l.dx =

kx +c. For example _[3 dx =3x+c
’/'d xll+|

n+l n+l
Ve RN

] ’ X e . (ax +b)
el X ::>Ix dx:m,n%—l ¥, I(ax+b) dXx =——

+C, nzl
a[n+l)
d 1 ] In(ax +b)
\K-—Inx=— ::>I—dx=lnx+c 6.I 1 dx=————-( )+c
) fb‘ X X ax+b a
; d mx mx
7. —e* =¢* :je‘dxzc"+c 8. .—d—c'“"=5——:>je’""dx=e +c
dx dx m m
d x x a d
9. —a"=a*.Ina ;Iaxdx=—-+c 10. —sinx =cosx :Icosxdxzsinx+c
dx Ina dx
\.H/d 1 i
. —COSX = —sin'x Djsmxdxz—-cosx+c
dx
1 d - 2 2 -
2. —tanx =sec’x — sec” xdx =tanx +¢
dx
13. E—cotx =—cosec>x :>Icoscc2x dx =—cotx +c¢
X
l4.a—secx=sccxtanx :Isccxtanxdx=secx+c
X
15. a—cosecx = —COoSec X cot x :Icosccxcolxdx =—cosecx +c¢
X
. sin mx
16.d—smmx=mcosmx :Icosmxdx: +c
X m

REMARK: (i) Observe that above formulae do not ¢
and cosec x. We shall discuss these in coming sectio
of multiple angle (mx) on the result. This

17 isin"x— 1 :>I l
dx V1-x2 1-x?

-1 1 -
18. —cos™' x = S dXx =cos™ x+c
dx V1-x? I

™
1
19.—9—tan"x= 5 :>_[
dx 1+ x

ontain the integrals of tan x, cot x, sec x

ns. (ii) In formula 13 observe the effect
is true for every formula from 7 to 12.

dx =sin”' x +¢

7 dx =tan'x +c¢

1+ x

- | _
20. -El*-col"'x= 17 3.[ ~dx =—cot™ x+c
X 1+ x~ 1+x
21. ——sec"x:—l—— :J;dx=scc"‘x+c
dx xVx2 -1 xVx?—1
d _ "
22. —cosec”' X = ———

1 ] A
= | ——=——=dx =—cosec™ x +c
dx xVx? -1 IX\JXZ—]

23.disinhx=coshx => |cosh xdx =sinhx +c¢
X

24, Ed—coshx=sinhx = |sinhxdx =coshx +¢

X
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25. i.tanh x=sech’x = J‘_sechzxdx =tanhx +c¢
dx f

26. -fl—coth X.= —cosech’x = Icoscczx dx =—-cothx +c
dx

.27. E-sechx =—sechx tanh x’ :>Isechx tanh x dx = -sechx +c¢
dx

28. —d—coscc hx =—cosechxcothx = Ico sec hx coth x dx =—cosechx +c¢
dx

sinhmx -

29. isinh mx =mcoshmx = Icosh mxdx = +cC

dx ! m

30. —d-sinh"lx= 1 :>I—l—dx=sinh"x+c=ln(x+vx2+l)
dx / 2, ’x2+

SI.icosh"x— I —dxhcosh x+(,-ln(x+\/x —l)+c
dx Jx2—

32. ilanh"x: l :>J 2dx=lanh"x+c

dx 1-x 1-x

d 3 1 0
33. —coth™ x= - :>_[ ~dx =coth™ x+c¢

dx |—x~ |—x~

d -1 —1 | | (l+\l—xz]
34, —sech "' x=—— = |——=dx=-s¢ch x+c=-In| ——— [+¢

dx xV1-x* J)(\/I—x2 i L

d -1 _l ] -1 (l"l‘\j‘l‘i‘x:}
35, —csch "' x=—— = |——dx=-csch” x+c=-In| —— [+c¢

dx xV1+x* '|-x\fl+x2 _ \ X

Example 01: Write down the anti-derivatives of the following functions .

() f(x)=0: Since —Ej—(c)=0 :>_fO.dx=c
- dx

32 5
(i) f(X) \/1 Ide—J. La dx*’{/—z-{—g—%x}f:.{,c

2x+3  (2x+3 ., 2 I 2x° x>
Gi) f(x)= J " dx-;_[xdx+3_|-;dx~-3—7+31|1x:—3~+31nx+c
2--3
(iv) f(x)-— : )
+l
2
x“-3 x2+1-4 x°+1
dx = dx = dx -4 dx = l1dx—-4tan ' x = x — -l e 4
Isz Ix+l Ix+l Ix+lx-[x an x=x-4tan x+c¢

(v) f(x)=tan’ x: Itan x dx -—-j(sec x—l)dx =Isec2xdx—jldx=tanx—x+c

(vi) f(x)=cot’ x: jcot x dx —I cosec” x-»l)dx—jcosec xdx—j]dx——cotx X+c
(vii) f(x) = sin’x:

_[Si" x dx =_[ (l—-cos2x] (J. ldx - Icos2xdx)=%[x—8in22x)+c

(viii) f(x) = cos ? 3 v
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2 1+ cos6x 1 ] sin 6x
3 dx = = — e
Icos X dx J'( 5 J dx 2(] Idx+_[ cos6xdx)—2(x+ 5 )+c

(ix) [(x)=v1-cosx -
(x) IJI —cos x dx =J‘\/2sin2(xf2) dx = \Ejsin(xIZ)dx = ﬁ(—wj=—zﬁc0s§+c

1/2
f(x) = sec’x cosec?x:
I seczxcoseczxdxzj-—-—z—l—'Tndxzﬂ ,,1 —dx =4 l dx
COs” xsin” x 4cos” xsin” x (2cosxsin x)2
=4I dx:4_[ coseczzxdx-—.—ctcmzx+c=-2cot2x+c

_ (sin 2x)
/8.2 METHODS OF INTEGRATION

There is no uniform technique to find integral of a given function. Several methods have
been developed to evaluate the integration of various functions depending upon their nature.
You will learn these methods gradually. To start with there are four major methods.

K Integration by substitution

2./ Integration by parts

3. Integration of algebraic rational functions

4.  Integration of algebraic irrational functions

S.  Integration of rational trigonometric functions

Integration by Substitution

This technique is used when we observe that imtegrand is the product or quotient of two functions
where the derivative of one function is present in the integrand in some form.

Integration by substitution mostly involves the following two formulae:

A n+l
o [(Fe))" F(x)dx :E(ii)]_m, n#—| FORMULA-I [F-1]
n
[ ;((")) dx = Inf(x)+c FORMULA-II [F-IN]
X

We shall give reference of these formulae whenever we use them.
Example 01: Evaluate the following integrals
(i]‘l.(ax2 +2bx+c)n (ax+b)dx
Solution: Here we observe that derivative of ('an(1 + 2bx + ¢) is 2(ax + b) and (ax + b) is
present in multiplication form. So let,
z=ax’+2bx+c =dz= 2(ax + b)dx =>dz/2=(ax+b)dx
n+l
| 2" (ax2 +2bx +c)

I
2 " L - " = = +C [F'I]
Thus, j'(ux +2bx +¢) (ax+b)dx S| =o— 207D

(ii).[\/l +cos® x sin 2x dx
3. . . . - .
Solution: Here we see that derivative of 1 + cos“x is -2sin X cos x = - sin 2x is present in
multiplication form, so let:
z=1+cos’x = dz=-2cosxsinx dx =—sin 2x dx = -dz =sin2x dx

112 22 2 2 \32
Thus, j\/|+cosfxsin2xdx=jz (~dz)=~—§/—§=7(l+cos x) +c  [F-I)
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dz | dx
3 =1 ——=—=dz=—
(m)jxnxdx. Put z=Inx = "
Now, Idx =I-l—dz=lnz+c=ln(lnx)+c
xln x

i . dz _ d
(iv) Ies‘"‘cosx dx : Put z=smx:>-d—=cosx — dz =cos xdx
X

Thus Iesinxcosx dX=ICZdZ=CZ+C=esmx+C

dz 1 1
Put z=t =>—= =dz= >-dx
(v) I dx ut z=tan"' x T 1ra e

etan I -1
Thus I . dx=Ie‘dz=e"+c=e“‘“ *+c
1+Xx~

(vi) I(x2+x)4(2x+l)d7§: Put z=(x3+x) :>-j—i—=2x+l —dz=(2x+1)dx

5 5
Thus I(xz +x)4(2x+1)dx =Iz4 dz=§+c=k(—-;—x)—+c

(vii) j(2x+1) dx : Put z=(x2+x) :Ezh +1 =>dz=(2x +1)dx
(x° +x) dx

(2x+l)
(x* +X)

(viii) Ilan x dx

Thus =jlzdz=lnz+c=ln(x3+x)+c

sin X sin X p ]
jtanxdxzj dx = j dx =-In(cos x) = In(cos x) "'=1n =lnsecx +c
CoSs X cos X CcOoS X

COS X

(ix) Ico[xdx :J' dx =Insinx+c¢ [F-11]

sin X

(sec x +tan x) ‘sec” X + sec X tan X
(x) Isecxdxzfsecx#dx=f( )dx
(sec x +tan X) (sec X +tan x)

=In(secx +tanx)+c

(xi) Icsc < dx = Icsc ¢ (cscx —cotx) dx = J- (csc™ X —csc X col X)
(cscx —cotx) (cscx+cotx)
REMARK: (2) In parts (x) and (xi) we have used [F-II]

dx =In(cscx —cotx)+c «
d p) d ) 2
(b) ——(secx+tanx)=(sccxtanx+sec“x) & ar—(cscx—cnlx)z(—cscxcotx+csc“x)
1+ x 1-+X 1+x 1
(xii) X d ’ dx = & | ——
N *e I\Jlx l+xxf T IJ:_*
\-I12

. X
= dx +j——-—,__|_x2 dx
=] — 12
J h—‘_ 2

] 1
(xiii) I

- o WU £ [ e S
(=2x)dx =sin ' x 2(| x) +c [F-I]

- Put vbx+c=2z = bx+c= =9
.1+\/Ex—+é c=2> =bdx= szz = dx =2zdz/b

ﬁ"':ﬁj‘a” :‘Iz:iaa {Ii::dz—afziadz}:;“]dz—aln(z+a)]
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=%[z-aln(x/bx+c +a):|+C = %[be +c-aln(vbx +c +a)]+C

- __dx
(nv)j( )tan'x tPutz=tan™' x =dz o

:>I=J%dz=lnz+c=ln(l+x2)+c

jsinx+cosx

- dx:Put z=sinx—cosx =>dz=(cosx +sinx) dx
sin X —Cos X

:>I=I-]-dz=lnz+c=ln(sinx—cosx)+c

) I&In\j_

dx: Put z=vx = dz=~x"2dx =50
2 Jx

=>I=2Ismz dz=——20()sz+c=—2cos\/;+c

(xvii) _[

e”

I( )=I(ejx+l)dx:‘Putz=e" = dz=e" dx
e +—

=1

=>1J'

[ 9
(xviii) | ——=dx:PutVe'-1=2z =e'=1+z" =e*dx =2z dz
J.\}«3"-1

dz=tan"'z+c=tan™ (e")+c

22 +1

Ly 2z dz=_[(l+zz}dz

:>I=J.\/%(c"dx):jl )
3

32
=2j(1+zz)dz=2{z+%]+c=2 Jer =1 +(e—_3l)— +c

(xix) jcos’ 0 sin’ 0 do =jcos’ ) smzesmede:j‘cos’ 0 (l—cosze)sinﬂde

cos® © _ cos' @
10

= j cos’ O sin® do— J' cos’ 0 sin® do = [F-I]

(1-cos "B) (1+cos26)
C2

(xx) Ism 0 cos’0 do = I =%Jl(l—(:os2 29)d9

2
(xxi) jmn- 0sec’ ede=jtanzesec'-’e(seceran9) de

(1+cos46) 2-1-cos406 = 1 1 sin40
___J'[ :t ezzj‘—de—gJ.(l—COS‘q'e)dB—-g[e—

=j(sec-"-e-1) sec? O(sec Otan 8) dO =j(sec‘ 6—sec’ 0) (secOtan ) do

g 50 . capd
=j(sec4 9) (secOtan 8) d(-)+j sec:2 6) (secOtan®) dO = Se; 9+.scc E‘+c [F-I)

3

PLIEDD

CUL

=

(exii) [(2x+3)V2x+1 dx: Put z=2x+1 =2? =2x+1 = 2zd2=2dx =zdz=dx

Also X =(z* =1)/2. Thus given integral becomes:
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1= j[
|
Put z=J2x+l , we gel: I='5'

(xxiii) 1= I-————-—dx ‘Put x =tan® — dx =sec>0d0

)zzdz I(z —-1+3 zdz-l zt+2z )dz-'—s—+-2—§i+62

(2x+1)"+ 5(2 x+1)"2 +c

2
l+x )
1 sec’ @
Thus, 1= {————— sec? 8d0 =] ———7sec” >0 do=[—_—do =]
j(l+lan 9)3; I(SCC sec’ secd
= fcos8 do =sinB+c 0
Now, try to understand the following technique.
x _Perp _ P _
tanf=x=—= — = P=x,B=1.By Pythagorus Theorem:
| Base B
HoJB + P =14x sinf=—=—
H J1+x?
Thus,
IR e
(xxiv)j b dx =I sin 2 dx=I——Slznx dx [cos xsexx=1]
COS X +Sec X cos X (€O X +sec x) cos’ X +]1

Putting z = cos x ¥ dz = - sinx dx ¥ -dz = sinx dx. Thus given integral becomes:

tan X 1 ¥ .
j—————dx=—j ——dz = —tan 'Z+c=tan"'(cosx)+c

coS X +5sec X 2" +1
(xxv)j - l. dx =— l J . sm(b.—a) dx
sin(x —a)sin(x —b) sin(b—a)” sin(x —a)sin(x —b)
- 1 J- .sin(x—-x?kb—a) il =— | Isi‘n[(x—a)f(x—b)]dx
sin(b—a)“ sin(x —a)sin(x —b) sin(b—a) < sin(x —a)sin(x —b)

_ 1 Isin(x—a)cos(x—b)—cos(x—a)sin(x—b)]d
sin(b—a) sin(x —a)sin(x —b) X

NOTE: Sin(fl - ) =sina cos p - cos a sin B

_ 1 Isin(x—a)cos(x—b)dx_Icos(x—a)sin(x—-b)dx]

sin(b—a)| - sin(x —a)sin(x —b) sin(x —a)sin(x —b)

| -J-cos(x—b)dx_ICOS(K—ﬂ) dx]z I

:sin(b—a)h a){|n[Sill(1'(—b)]—ln[sin(x—il)]}

sin(x —b) sin(x —a) sin(b —
. | =
(xxvi) de= [-BE % s s = =5sec” xdx
J‘(Slanxﬂ)cos!x (SIaan)dx'Pumngz Bl | SR

< d2/5 = sec’x dx. Thus given integration becomes:

! Jel | |
J.(5tan7c+1)¢052xdx _EI;dz=§|"Z+C=-5-|n(5tanx+])+c

(xxvii) Imsin 2xdx : Putting z =14+5cos? x = dz =—10cos x sin x dx
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> -dz/5 = 2sin x €Os X dx = sin 2x dx. Thus given integral becomes:

J'\/I+5cos xamzxdx__-_‘[\/—d ____ 2" 2 2

——+c— 15(I+Scoszx) +c

53/2

| 2

(xxviii) J-'"'—‘—‘—-—-———dx-— I dx <] sec” x
= 5 3 THR = el
2sin® x +3cos? x IZcos'x(tan‘xﬂ-S/Z) ZI(lan1x+3/2)

Putting z = tan x ")dz-seszdx Alsolet 3/2 =a* = 4 =(3/2). Thus
fom—— -—j =g 12
2sin” x +3cos’ x z +at)  2a g Te

Putting the values of 7 and a, we obtam

J. : dle.\[—zj[an-l. tan g_ X 4+c= ] -1 2
2sin® x +3cos? x 2V3 T3 A LI 3 Xt

) 1
(mx)".*—ﬁseh/;tan\/; dx : Putting z=\x —=dz=

dx > 2dz=-l—dx

[
2Jx Jx

Thus given integral becomes:

]
J--—\/—_—SCC Xtanvx dx = 2Iscczt:m zdz=2secz+c= 2secyX +¢
X
sinx . n . .
(xxv) I(n: +[sin x] )cosx dx : Putting z =5in x =¥ dz = cos x dx
A a % e
Thus given integral becomes: [ (" « sin x| Jcosx dx
& 2 |

2 n+l SN X - n+l
7 o) T s sin x
=J‘(T["+Zn)d2=IH’dZ+IZ"dZ=~+ +c = +[ } +c
Int m+1 Inm m+1

REMARK: We have used the formuluc:j'l dx = l— and j\ dx = '

Ina n+l
(xxvi) I £os x[ dx : Putting z = sinx = dz = cos x dx
3sin X + 4+/sin x
COS X I :
Thus given integral becomes: —=(X = | ——F=dz (N
’ s ° '[B:iinx+4\/smx J-Bz+4\,/;

Substituting u =Jz =du= I dz =2Jz du=dz = 2udu=dz
2Vz

Thus (1) becomes:

COS X | & - .
L S T | N Y| ..I
’[3§|nx+4\/smx J-3u +4u Ju(?»u +4) (3u+4)
ln("iu +4) - )
3

Putn = \/— =4/sin X in (2), we gel
COS X In (3\/;;—’(4-4)

r.  —F——dx =2 tC

3sin x +4+/sin x -1

‘”“V)Ix It +1 dx_I 2 /%2 41 (xdx) .
Putting 2= x4 | D xi=z'-1 P 2xdx=2zdz -)xdx:zdz.Tus,
— .
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I J:-dx—j(z —I)z(zdz)—jz dx—I? dZ—-—-——‘l'(,

(x°+l) v (x1 +1) ,2

3

+C

Now z—\/x +1 -)I IWxi4+ldx=

Some well — known substitutions
The following substitutions are generally helpful to transform the integrand to an easier from.

If the integrand contains: Make the substitution:
al—x2 x:usin@orx:acose
al +x° x=atan80rx=asinh9

\}xz—az x:aseceorxzacoshe
ol
Jax+b ax+b=27" :

Example 02: Evaluate the following integrals

: dx
i) |—F—
; IH— I+x

Solution: Let Vx+1=2 —x+l=2> =dx=2zdz

j‘]_'_j‘/)](—_{_—; j-liz’d7=2-[]“:iz dz= “Idzﬂj——d/J: [ z-1In I+z] +C

[\/Tf—ln(w\[x_-f)hc

dx
(.‘) —_— __________: —
ii '[‘/x2+4 jJ4(x2/4+l) I2J(x/2)2+l

Putz = x/2 3 27 =x <> 2dz = dx. Thus given integration becomes

X
= —I =sin~'z+c=sinh” ( }+c
\!z tk 2

. (m)j dx Putx =asec® =>dx =asecBtan6db

;1’5(:(:‘9—::12 atanB.asecO :

= | 4 ysectan8d= [ 1secBtand 15 NOTE: sec’d - 1= tan’ 8

(asec) (asecB)

tan’© sin® 1 ¢sin’B.cos’ @ ]

= do=—|————db=— B st B | [P 2 :
'[qec. o) J’c:os 9.sec’ O a'j cos® 0 : a’ I(bme) -EasHiD

| sin’6 .
=— +c [F-I] (D

d

Now. x =asec® —>secO=x/a —cosf=al/x =>sin@=+1-cos’ 0

d X" —a’ X -a
:>sm9“1’|— = J

— 3 2 2\ M2
X" —a’ (K i )
Substituting this in (1), we get: L—_ ~ +e=rm——r—+cC
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(iv)j a’ —x2dx - Put x = asing =dx=acos0dp.

Thus I=J‘\/a —~a’ sin? B.acosede=_[a\/l—sin29.acosed8=azj-

) 2 i
= 'a‘jcos2 0do = az_[(————-—-] $4 L 2ejdﬁ = %—[EH sz?'e} +c

APPLIEDD CALCULUS

cosB.cos0dO

2
Now,sin6=x/a =»g= sin"(x/a)l

Also sin20 =2sinBcosO = 2sin OVl-sin’g =2% F(ﬁ} - 2xva’ —x?
d az

(1)

0’
Substituting these values in (1), we get;

‘2 9 /'2__ 2 "
1=‘2 sin”l[£)+~x i ] '[‘

. o=l X /
3 +Cc=—| —sin — [+ Xx ;12—)(2 +C
a 2a 2 a

a

Thus, I=_“\Ia2 —x” dx :l[x\/a"’ —x? +—I-sin" (ij:[+c

2 a a

Similarly, I—j a’+ x> dx _~[x\/d +x° +lsmh [x}}-{-c -
a

d

And, I:J.\”ﬁ2 —a® dx =%{X\Jx2 ~a? —icoslf'[i]]h:
2 a

d

REMARK' Students are advised to prove the last two results.

(v)
o
Solution: Putting x =a tan® = dx = a sec 6 do

~a sec’ 0 do ————I———— sec> 0 do

a*tan’0+a? tan~0+1

*\+a"

5 |
I —I qec”BdE]:—_[ldB:—G-lrcz—lan 'X +¢
x? +a’ sec’ 0 a a a

Integration by Parts

The product rule of differentiation leads to a method of integration called integration by

d dw du
parts. Consider, E;(uw) =u g+ dx
' du
Integrating both sides w.r.t x, we get: uw —Iu——x—dx + wadx (1)
Let —=vV DSw= Ivdx - Substituting these in (1), we get:
dx

u_[wdx =Iuvdx +I(I_\'dx)j—:dx 4 _[uvdx = ujvdx =+I:—:(Ivdx)dx (2)

Formula (2) is known as integration by parts and is very much useful formula when one has
Lo evaluate the integral of production of two functions.

Simple Tips to Select u and v

(i) If x" appears with sin mx or cos mx or ¢"™, take u = x" and v the other functions.
Gi)  Ipx" appears with In x or any inverse trigonometric function, take v = x" and other
function as u.

(iii)  If the integrand is of the form e sin (bx + ¢) or ¢ cos(bx + ¢) then you are free

163



http://www.itwebister.com

APPLIEDD CALCULU

nverse trigonometric functions
iven log function

FARKALEET SERIES _ ‘
dv.

to choose any function as u an ‘
(iv)  If the integrand contains In X only or any onc of 1
then multiply the integrand by 1 and consider v =1 and u the g

rigonometric function.

or inverse
rals using by parts formula

Example 03: Evaluate the following integ
(i) Ixc‘ dx : Consideru=xand v = e*. Then

Ixe" dx = x_[e" dx—j%(jc“dx)dx =xe" —
u=In x and v= x*. Then

Il.c"dx —_ye* —e* +c=e(x-D+<

(ii) Ixz In x dx : Consider
szlnxdlenxj.xzdx—j-—d—ln x(szdedx:ln x.x—l—jl.ﬁdx =m—ljx2dx
dx . x 3 3 3

Chnx 1x° x> I

_xUR 25 gpee—| X —g | E
3 33 3 3
(iii) I!n x dx =Iln x.1dx : Consider u =In x and v= 1. Then
‘.Idx

I!nxdx=ln led\'—‘[%lnxuldx)dx =xInx —I%.x dx = xlnxf_

—xInx=-x=x(Inx-1+c¢

. 2. -l : . 2
(IV)IX tan~' x dx : Consider u = tan ''x and v=x".Then

sz tanf'_ xdx = tan”' xe: dx-—J-zid:mn"' \:ux:dt)dx —tan”' \.%}—Il:x: g

(1

3, -l 3

x tan” x | X:

= ——I ~dx
3 3714 x°

..,

Now consider, I ~
1+ x° I+ x

& 2xdx=dz =@ xdx= dz/2. Thus:

x’ XX =]
jmzdx-jm:dx=V_Z_dz:f[§_§)dz=;m,_ﬁd,__.z_,,,.,,+c

Putting the value ofz=(l + xz) and using equation (1), we get:
3 -1 o
2 1 x tan x 1
x“tan” xdx = ——————r 2 :
I 3 BL(IH )—In(l+x“)}+c
. | v
(lv)ISIn x dx =Ism 'x (1)dx : Consider u = sin! xand v=1. Then

Isin" xdx :Isin" x.1dx =sin™" ledx —jdis;in_I xUldx)dx
- X

I 2
Ax)dx = xsin”' x+ %I(l e )-”- (-2x)dx

Ny X2 X , 5
x=.[ dx : Putting | + X" =2 &> x =z-1

=sin™' x.(x)—f

| =2%*

(| 2 112

:)Jsin"xdx:xqin" ] —x)

) ! X+ ——m— — = g

> 172 +Cc=XSsIn >\+\jll—x'+c

I+xInx
) (e x| 4
(v J“’ [—————x )dx-Ic .;{-cllx+jx}n:e dx.:_[e".%dxﬂ[lnxc"dx ) (H
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In x. Using by parts formula, we get:
—I —dx =e I——dx —J‘——c U dx)dx =e" Inx—fe Anx dx
Thus cquatlon (1) becomes:
1+xInx :
Jc (——-—x——) dx =¢* lnx-—_[c‘ In x dx +Iln xe*dx=e*lnx +c
(vi) Ixsccz xdx : Consider u = x and v = sec’. Then

Ixsec" xdx = xjs::c:2 x dx -I£;(x)”sec2 xdx)dx = x tan x -Il.tan x dx

=Xtanx—Insecx +c
(vii) Isec3 x dx

. l
Now consider Ie‘ .—-dx tLetu=e* andv=

3 2 )
sec” xdx = ISec X.sec” x dx : Consider u = sec x and v = sec’x. Then

I-Isec xdx-secxjsec xdx-f——(sec:()(jsm xdx)dx

=sec X tan x —..“BCCX tan x. tan x dx = sec x tan X-J\ECX [Zlﬂ" X dx

-secxlanx—!sec x(sec x—])dx =secxlanx—jsec' xdx—fsccxdx
[—.

secx tan x — I —In(sec x + tan x) = I+1=secxtan x —In(sec x + tan x) = 21

1
Thus, 1= j.sec3x dx =;[sec X tan x — In(sec x +tan x)] +c

(vm)I mxd : NOTE, smx—’hmicos— and 1-cosx =2sin” X . Thus,
l—cosx . 2 2

Ix-smx

dx = .[_2— I2s:nx/2co~.xl2 x———jxcsc —dx J.col—dx
l—-cosx 2sin“ x/2 2sin~x/2

Consider the first integral: Taking u = x and v = csc® x/2 and mlcgralmg by parts:

Ix—sinxdx:l (_2(:0[_)} j’]( 2;01—]dx+jcot——dx
1-cosx 2

— g1 X X X X
.} I—x——m dx =-x cot—+jc0t—dx —Icot—dx =-xcot_+c
l—cosx 2 2 2 4
smx
(ix) _[
-—cosx

X

i 2 X X
J'c‘ st (L dx-—-J.————e dx—'J.c’ 251nx/%cosx/2{ix =1Ic‘ csc‘idx—fc cot—dx
1—cos x 2sin” x/2 2sin’x/2 2 2 2

2 . - .
Consider the first integral: Taking u = ¢ and v = ¢sc” x/2 and integrating by parts:

X —sin x | X % X . id
e ————dx=—|e” —ZCOI—H— e ,(*2col~—de+ e cot—dx
'f I -cos x 2{ ( 2 -[ 2 -[ 2

X X
:bj‘ _“"”‘ s Colf_.p.jc" cot = dx —Ie" cot—dx =—e* cot—+c
2 2 2 .

I-—c0\x

(x) Itdn " dx
1+ x

Putting x = cos B = dx = - sin 8 dB. Moreover,
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J cose ”’sm 0/2 Thm
l+x +c096 2cos’ 9/2
; ] ;
- 12X i = [tan™[ tan> |.(=si ~ (% (—sin6)do=—=[6s5in6 do
Ilan J—— dx—Itdn (lanz}( sin 6)d0 -[2( sin 8) 2_[

Taking u = 0 and v = sin © and integrating by parts, we get:

Itan ',} dx-——[B( cos 0) — Il( Lose)dﬂj 7[—9cusﬁ+sinﬂ]+c
1+ x 2

Now cosO=x=» sinf = V1-cos? 8 =v1-x>. Also 0 =cos” x. Thus

Itdn ,|’|-—x dx-%[xcos_' x——\fl—x?]+c

-l #
(xi) j%m xra dx

Putting x = a tan-® =» dx = 2atan 0 sec 6 d6. Morcover,

23 5 b
tan- 0 sin“ 0 > !
’ } atan” 0 :J — = / S — =+/sin” @ =sin 0. Thus,
X+a atan” O+a sec” 0 \cos‘ﬁ.scc‘e

Is;in'I J dx = _f\ln ](mne) (2atan BsecH)do = ”1’[8 (secBtan0)do
X+

Taking u= 0 and v =sec B tan O and integrating by parts. we get:

jhin_lJ’X dx:?_a!G.sccﬂ—jl.scced@}:-2;1[8.s'cc8-lnl>cc8+[;m@\]+c (1)

X+a -

5 fx > 5 - X a+x ’x
Now atan " 8=x D unb=_|—. scc0=\fl+l:u126=\ﬂ+—= | & O=rtan”'  [=
d ’ a

a \ d

Thus, equation (1) becomes

r — / —x\1
o X { + X _ X a IX ||
Ism ! f dx =2al tan ]\/——Int —— /— +C
X+a | d a . 2
t Va? +x \3,_

(xii) J.e"“ sin(bx +¢)dx : Integrating by parts taking u = ¢ and v = sin(bx + ¢); we get

[ [_COS(bK+C)J—I:IC“‘ [—cos(bx +C)]dx
b b

e co:»(bx+c)+aj-ea‘ (bx d
__b b cos(bx +c¢)dx

Integrating by parts once again taking u = ¢™and v = cos(bx + ¢)

. cos(bx+c) a sin(bx +c¢) sin(bx +
=" ———— | e ——— T _|pe 2227 &)
E h[ 5 .[‘“‘ b clxil

o Cos(bx+¢) a 4 . a-
bt Y % e” sin(bx +c)—‘—-,—_|-c‘“ sin(bx + ¢)dx
2

~

b

asin(bx +c¢)—bcos(bx + a’ 2 .
_ 1sin( ) : cos(bx +¢) ‘-q] DHE\THasln(bx+c)—bcus(bx+c)
b b- h- b
( a2 ) asin(bx +c)—bcos(bx +¢)
J b’
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== fe“" sin(bx +¢)dx = [asin(bx +¢)—bcos(bx +c)]+C

(az+b2)

|
(az+b2)
(xiii) Iln(x+\/1+x2)dx =Iln(x+\/l+x2).l dx
Take v=1 and u=ln(x+x/1+x3) :;~iu—=—l—.[l+l 1+ x* ‘m.Zx]
dx x4 V1+x2 ( )
5 du_ | {H X }: ] x+Vl+x? |
dx X+VI+x° I+ x2 K+\/]+X2 \/]-J-x2 \ll+x2

Thus using integral by parts férmula, we obtain:

jln(x+m)dx=‘[ln(x+\/l—+—f).ldx:[n(x+m).x—f 1 x dx

Similarly, Ie"" cos(bx +c¢)dx = [acos(bx +c) + bsin(bx + c)]+C (See Exercise)

Ve x>
: (H-x:)I

e p

/
=]n(x+\/l+x2),x—lj(l-r-x:)_m@x)dx:xln(x+\fl+x2)———!-

| 241 ‘2 1/2
-)J.In(x+\]lf+x2)dx:xin(x+\/l+x2)—\/]+x3+c.

-

X“+1
1)

2 4.5 - x 1)
c"dxzj-x o bl 2xc‘dx=Im—):e"dx—2I i —e" dx

(xiv) .
J‘ (x +1)

Py

(x.+

i
:J.e“ dx—QJ'()H:]—)Zl e’ dx =e” —2“(::}1)2 e’ dx—j(xil): e‘dx}
X

2
-)J' - H, e dx =" =2 I
(x+1)° (x+1)
Consider the second integral and integrating by parts taking u =¢* and v = (x + 1)~

J-cx-(xﬂ)_zdx=e‘.(x+|)"_J'cx(xﬂ)-ldx: X x

e’ dx —ch.(x +1)7 dx“

—

e

(x+l):_J‘(x+l)

dx .

Thus equation (1) becomes:

SRR, ¢ x.— & = X [=¢" 5 © c
‘[(x+l)2e dx=e _2[I(K+l)d (x+1) J(x+1)d j| +-(x+l)+

(xv) Icos(lnx)dx:Putting z=Inx =>x=e" =>dx =e’dz. Thus

J'cos('ln x]dx=_[e’ cosz dz ‘ (1)

Using the formula: Ic“" cos(bx«t+c)dx = [acos(bx +¢) +bsin(bx +c)]

(az-l-bz)
by taking a= 1, b= 1 and ¢ = 0, we get:

_ et
cos(lnx)dx = |e’ cosz dz =
Jees Qo) di=fe 1+1

Substituting e’ = x and z = In x, we get:

[cosz+sinz]+c

(M
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Icos(ln x)dx = %-[cos(ln x)+sin(ln x)]+c
(xvi)_[\/;c",;dx : Putting z = Jx Sdz=dx/2Jx =dx/2z =>dx= 2zdz
ThusIJ; é'J;dx = —2Ize”dz. Integrating by parts, we get:’
IJ; eV dx = QIzc"dz = 2[-26" —fl .(-c“”) dz]
= 2[—23“Z +(—c“)]+c =-2e[z+1]+¢
~ Substituting z = Jx , we gelZIJ;C_J;dX =—2c“f"_[~/;+ l]+c

5 . 2
(xvii) ‘lzjxse'l dx =lec’3x"dx:Putlmg z=x3 =>dz=3x"dx =>dz/3=x"dx

Thus, l:jxsc"3 dx =%Ize’dz :%[zc’ —Il.e’ dz] = J}—[zc’ —-c'] ——-E}i[z—l]+c

x3

3 e
Substituting z=x’, we get:l:J‘xﬁe" dx =—§—[x3—l]+c

L n+| P 1 ,\'"H
tan X ——— -
n+l1 n+l-l+x-

dx

Example 04: Show that| =Jx” tan”' x dx =

Hence evaluate [ = Ixi tan”' x dx . Also find the reduction formula for 1= J“\"e‘ dx . Hence

evaluate I, :_[xie‘ dx,

Solution: Let u=tan'x and v = x". Using by parts formula, we get:
gbyp g
n+l n+l n+! n+l
- X 1 X X _ 1 X
I=Ix"tan xdx =tan Xx. —I — S -dx =——1an ' x—
I+x~ 1+n

—dx
n+l n+l n+l° 1+x”

Replacing n by 3, we have

N
_[x}lan‘l x dx =x—-tan" x__]_I
4 4

4

4
A R SEVER Y |
dx = 3 tan” X IIL\ -1+ ,jdx

1+x* 14+ x~

And ﬁ
X -
——=x+tan_ ' X |[+c¢

1
4

- X .
I=J.X"'lan Fxdx =Ttan :

-
X ——

It may be noted that ‘Reduction Formula is that formula where the power of x" is reduced. It
is also known as ‘Recurrence Formula™ means the formula that is repeatedly applied. Now
consider: . -

[:Ix“e‘ dx =x"e* —J.nx""e"dx =x"e* —njx""c‘dx NOTE: u=x", v=g¢*
This is the reduction formula. Now,
[ :jxéexdx:xde‘*"‘flx“ ‘dx = xYe* - I e dx ‘
; e dj( x'e’ —4)xe"dx . Apply this formula repeatedly, we get
[, =x"e’ —4[:(‘(:‘ —3Ix2c‘dx =x'ef <dxle* 4 lZlec"dx

4 x 3.x P
=xe—4xe+2[“—7j"" =5 y
12) x%e" 2| x e’dx |=x"e* —4x’e* £12x2¢’ ~24Ix e*dx

4 x 3 X 2 r
= - > 2x°e™ - 2 X 4
x'e* —dx ¢t +12x%" - 24 xe —Ic"dx}:x e’ —4x’e* +12x%e* — 24xe” + 2e* +
i : 2 . C

Thus, 1, =J‘X4€’dx =t [ x* —4x? +12x? = 24x +24]+c
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Example 05: Evaluate of the following integrals and find their reduction formulae.

(i) Isin" x dx (i) Icos" x dx (iii) Itan" X dx

(iv) Icol" X dx (v) Iscc" X dx : (vi) Icsc" xdx

Solution: (i) Let I, :Isin" x dx =Isin"" xsinxdx . Taking u = sin"' x and v = sin x and
integrating by parts, we get

I, = sin"™' x(-cos x)—I(n —1)sin"? x(cos x).(~cosi)dx

' . ne . =3 g oy : . n- . 2
=—sin" 'xcusx+(n—])_[sm" “xcos’ xdx = —sin""' x cos x +(n—I)Ism" 2x(1-sin? x)dx
I, ==sin"" xcosx +(n—DI,_, —(n-DI_

2 I, +(n-DI, ==sin"" xcosx +(n -DI__,
> -1+, =-sin"" xcosx+(n-1)1,2

sin"'xcosx  n—|

son=l

‘ sin”  xcosx n-1¢. .,

.= + I .= |smn" xdx=- + sin" ™~ x dx

n n-<
n n n n

n-1 .
- cos  xsinx n-1 5 ¢
(ii) Icos" xdx = + jcos" - xdx2 (Exercise)
) n n

(i) Let I, = j tan” x dx =_[ tan" " x tan” x dx =J‘ tan""” x (sec” x—1)dx

n-1
-2 2 n-2 L X i

=I1un“ " xsec” xdx —Itan xdx = -2 —Imn x dx

n-I1
NOTE: We have used I'm'n'lulu'f(f(‘x))n fr(x)dx .—.(I'(xj)"”/(n +1) in first integral

n-I| n-1 roe
L 0 1 n-2 %
Thus [, = LB e > jtun 7 ML —Jmn X dx
n-| - n—|
. n CO[n‘] X n-2 -~ g " .
(iv) Icot xdx = —ﬁ—jC()l T xdx (Exercisce)
n-—1

g | 2 . H
(v) Let 1, :Isec" x dx =Iscc" “xsec”xdx. Taking u = se¢"? x and v = sec’ x and
integrating by parts, we get
I, = sec™ x(tan x)—j(n - ?.)sec"‘J x(secx tan x).(tan x)dx '
) s | ¥ - ey

=sec" " xtanx —(n —Z)Isec" “xtan” xdx =sec" x tanx - (n —Z)Isec"" x(sec” x —1)dx
[, = sec” 7 xtanx —(n - Z)Iscc" xdx +(n —?.)j.sec”'z x dx

=2
> [ +(n=2) =sec"“xtanx+(n-2)I _,

iy )
2 n-2+ 1), =sec" xtanx +(n-2) 1,5

-2
sec’ “Xlanx n-=-2
+

2
n-I Sn=1 "

. n-2
(vi) I, =Ic0<ec"x =2 XEOIX N e I

n-| n-1
Integration of Rational Algebraic Functions.
An expression of the form P(x)/Q(x) where P(x) and Q(x) are polynomials with real
coefficients is called a rational function. In this section we shall study the integration of such
functions by the methods of partial fractions and completing the squares.

n-2 [Exercise]
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In the fraction P(x)/Q(x), if the degree of the numerator is less than that of the denominator,
the fraction is called a proper fraction, otherwise the improper fraction.
Integration by Partial Fractions

Before we study the integration by partial
fractions are? Consider the followmg cxpresslon

fractions, we must understand what partial

( —l) (X—3)
3 e g ] 2 (x 3)+2(x—1) 3x-35
If we simplify it, we get -1 (x—3) D3 " D=3

X ) is called “Resultant Fraction” and the terms 1/(x-1) and

(x-N(x-3)
2/(x —3)are called its “Partial Fractions’'.
“Partial Fractions”. What about the reverse proccq~;° That is, is it possible to find the partial
fractions from the resultant fraction? The answer is yes. But we have to learn the process to
get partial fractions from the resultant fraction. The process is shown as under:
3x-5 _ A . B (1)
(x=D(x=3) (x-D (x=3)

e L, o) o il D 3x-5=Ax-3)+Bx-1) (2
(x-1)(x=3) (x—D(x-3) :
Putx-1=0x=1in(2),weget: 3-5=A(1-3) &-2=-2A > A=1
Putx-3=0=x=3in(2). \xcgc 9 5=B(3~'1L)=»4 =2B 2> B=1I

2\ : +- 2 . This 1s same as above.
) (x-—])(x—3) (x=1) (x=3)
REMARK: It may be noted that before we resolve the resultant fraction into partial
fractions. we must check that degree of a polynomial in the numerator is less than the degree
of polynomial in the denominator. If yes, then we directly start resolving given expression
into partial fraction technique. In case it isn’t, we divide the numerator by the denominator
till the degree of the polynomial in the numerator becomes less than degree of polynomial in
the denominator. After this process is completed. we resolve the resultant fractions into
partial fractions. We shall study THREE cases of partial fractions.
CASE 1: When all factors of the denominator D(x) are linear and distinct
2x -3
(x=D(x+1)(2x+3) ;
2x-3 A B C
= + +
(x=-Dx+D)2x+3) x-1 x+1 2x+3

The expression,
Thus it is easy to find “Resultant Fraction” from

2

Thus equation (1) becomes:

For example,

In this case, we write:

CASE 2: When the factors of D(x) are linear but some are repeated

-

For example, ——————.
(x =D~ (x+3)

x? A B C

2 = + >t
(x=D"(x+3) (x=1) (x=1)" (x+1)
CASE 3: When D(x) has non-repeated irreducible quadratic factors

In this case, we write:

For example. x*/[(x =1)(x* +4)]
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2
i i & A +
In this case, we write: Bx +C

2 - t—
(x=-D(x"+4) (x-1) (x2+4)
All these cases are studied by means of cxamples. We shall directly consider the problems of

evaluating the integrations which involve partial fracnons
Example 01: Evaluate the following mtegrals

I e 2
(i) I(x ;)-:x 3) (n)I x = (m)j s dx

. COs X
d
D I(x—l)(x +4) ) J(l+sin X)(2+sin x)(3+sinx) X

Solution: (i) Here degree of a polynomial in the numerator is less than the degree of
polynomial in the denominator, so by using partial fractions, we have
x+1 A B
= + (n
(x=2)(x-3) x-2 x-3
Multiplying both sides of (1) by (x —2) (x - 3), we get
X+ 1=A(x-3)+B(x-2)
Now put x -2 =0 = x =2 in (2), we have
2+1=A2-3) == A=-13
Againput x -3 =0 = x =3 into (2), we have
3+1=B(3-2)2>B=4
X+ 1 _ =3 A 4 3)
(x=2)(x=-3) x-2 x=3

Now integrating, we have

X +1 X
'[(x—2)(x—3) ) }J‘

(i) —g= =A+B M
(x"—a°) (x=a)(x+a) x-a x+a
Multiplying both sides of (1) by (x — a) (x + a), we get
| = A(x +a)+B(x-a) (2)
Now putx —a=0=» x =ain (2), we have
l=A(a+a) =2 A=1/2a
Againput x +a=0 =¥ x = -a into (2), we have: l=B(-a-a)»B=-1/2a

1 I 1/2a  —1/2a
Thus (1) becomes: ————= - i 3)
(x*—a%) (x—-a)(x+a) x-a x+a

Now integrating, we have

l ire L] , B
Iﬁdxzz_a“ - dx_-jxﬂldx}—z[ln(x—d)-ln(x+a)]+c

(2)

Thus (1) becomes:

dx ==3In(x -=2)+4In(x = 3) +¢

X—a
-)I : In(x_a)+c
(x*>—a’ 2:1 X+a
Similarly, J'————dx———]n( )+c [Left as Exercise]
(a” - x~) 2a a—x

(1i) ___x___

(x=1)* (x + 1
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: 2 D
Solution: Consider x3 = A + 2 — + £ TR (D
x-D (x+D) x=1 (x=1)7 (x=1) x+1

Multiplying both sides by (x — 1)* (x + 1), we get
CxP= AX - I)Z(x +D)+Bx-1)(x+1)+C(x+ 1)+ D(x - 1) (2)
Substituting x—1=0 @ x=11in (2), we get: 1=2C > C=172
Substithiing X + 1 =0 = x=-1in (2), we get: |=-8D=>D=-1/8
You may observe that in (1), there are four unknowns A, B, C and D but there are only two
factors (x = 1) and (x + 1). Thus only two unknown C and D are found
To find the remaining unknowns A and B, we rewrite the equation (2) in simplificd form:
C=A - —x+ 1) +B((x* - 1) +C(x + )+ D(x*-3x"+3x - 1)
Comparing the coefficients of:
x:0=A+DD>A=-DIFA=1/8 [Since D = -1/8]
i 1=-A+B-3D=>B=1+A+3D=1+1/8-38=6/8=3/4
Thus A= 1/8,B=3/4,C=1/2and D=-1/8
Substituting all these values into equation (1), we gel
x’ 1 3 | z
3 = w >+ '
(x-1'(x+1) 8(x-1) Ax=-D* 2x=1" 8(x+1)
Integrating both sides with respect to X, we have

X’ Cledx 3e dx L dx  Tedx
-[ dx'§Ix—1+ZJ x_|)1+EJ‘();_])!—§J-x+I

(x—~l)‘(x+l) (
| lpdx 3 AN\ M 3 | ¢ dx
=— += Hx =D dx+=|(x~1) "dx -
A 3} e ey
1 3x—np 1 x=p7"
= 1A I += -2 In(x+1
8 ( ) 4 (=2+1) 2 (=3+1) SHM-L el
X l
Thus, I——T——dx:—ln(x—l)— 2 — : ,ulln(,\'+l)+c
(x=1)(x+1) 8 4x—1) 4(x-1" 8
(iii) '[_—f,—'—dx:éonsider . % _ A BuiC (0
(x=D(x"+4) (x=D(x*+4) x-1 (x"+4)
Mulliplxing (1) by (x - 1) (x* +4) , we get
x=A(x +4)(Bx+C)(x-1) (2)
Substituting x -1 =0 =» x=11n(2) we have: 1 = A(l1 +4)=> A=1/5
Now to find B and C, we simplify (2) to get;
x=Ax’+4A +Bx’ -Bx +Cx-C (3)
Njow comparing the coefficients of:
X" 0=A+B-2B=-A 2B=-1/5
X: 1=-B+C 2 C=1+B=1-1/5 =2C=4/5
Substituting the values of A, B and C in (1), we have
X | -x+4 ] X 4

g +——= -
(x=D(x"+4) S(x=1) S(x +4) 3S(x-1) 5(K3+4)+5(x3+4]
Now integrating, we have

| | 1
[ SPRY SR Y S SN S
(x—l)(x‘+4) 59 x-1 5(x"+4) 59(x"+4)
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!

S e et I
STx=1"" g (x*+4) "5 (x2+q)
l 1 4 1

=zIin(x-1n-_—, e+ 21 =1 X

5 0 (x )+5.2tan 2+c
X I I

Thus, __“—-—-;—_____dx:_ln b S | P 2 _‘3, -1 X

I(x~l)(x“+4) 5 (x=1) Ioln(x +4)+5tdn -*+2 c

(iv) . COs X
-[(] +SINX) (2 +5sin X)(3+5sin x) &
Let z =sin x dz = cos x dx. Therefore
[= Cos X

(I+sin x) (2 + sin X)(3+sin x) X =I

Now,-—x_-L_ﬁ_zhé_ﬁLJ.‘a_,L
(l+z)(2+z)(3+z) I+z 24,
Multiplying (1) by (1 +2)2+2) 3 + Z)t

7 l=A(2+z)(3+z)+B(l
Substi[uling l+2z2=0 Z=-linto (2),

I:A(2— )3 - 1)=2A
Substituting 2 + 2=0 = ;-
1 =B(1] -2)(3-2)=-B
Substituting 3 + z = ¢ 2z =3into

(2)

I=C(1-3)2<3)=2¢

Hence, equation (1) becomes: !
+z2)(2+2

Integrating, we get

-‘-‘——-—-——_____I dz =lJ.__1—dZ_I l
(I+z)(2+2)(3+2) 271+z2

=lln(l+z)-ln(2
2
t

Replacing z by sin x, we ge

'[ COS X

1
2+zdz+§"‘

T
(1 +2)(2+2)(3+2)

-2iinto (2) to get

¢ l
3+7z (0
0 get
+z)(3+z)+C(l+z)(2+z) (2)
we get

> A=
< B=.]
to get
9C:]/:
_1/2_ 1 1/2
J3+2) l+z 24, 3+2z

]
3+7z

dz

+7,)+—2I—In(3+z)+c

dx =lln(l+sinx)—ln(2+sinx)+lln(3+sin X)+c¢
(I+sinx)(2+sinx)(3+sinx) 2 2

Integration by Completing the Squares Method

If the rational algebraic function P(x)/Q(x) is such that Q(x) is quadr

do not have real factors, the me[hoq of
integrations of P(x)/Q(x). The method is we

Example 02: Evaluate the following by “Completing the Squares

: 2 .. x—1 dx
(i) Ix2+4x+sdx (ii) fxz dxt3

Solution: (i) Consider f

atic function that
completing the squares is used to evaluate the
Il presented by the tollowing two examples.

Method”,

—_,____dx :I
X" +4x+5 (x
Putling: 2=X+2 =P dz=dx. Thus

X=|—_

Ll el Ll d 9 dx
THAX+2°)-27+5 (x+2)" +1

J-‘?——-I———hdx ::I ! dz=tan 'z4+c¢c= tan™'(x +2)+c¢

hl
X"+4x +5 z-+1
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x—1 e 2x-2 | (2x+4-4=-2
.. . : d - — __,____——-dx = — _-—T———__'_‘dx . ThUQ,
(ii) Consider, —-_—_+4x+5 X 2'[x2+4x+5 2,[ X +4x+5
it :’f _x+4 .__J'__-————dxz—l—ln(xl+4>r-+5)'3l| (1)
X +4x+5 x?+4x+5 x*+4x+35
Here, I, =I - dx =tan~'(x +2). [See part (i)]. Thus equation (1) becomes:
Xx“+4x+5 .
I,,x-‘] dx=lln(x2+4x+5)-—3lan"(x+2)+c
X" +4x+5 2 ‘
24 4x45)—4x=5+x+1
(i) Ix 4 x+1 dx:J-(x +4x ,,) X X+
+4x+5 x-+4x+5
4 +(4/3
*j* HAXHS o +j dxefhh-ﬁj x+(479)
X~ +4x+5 x-+4x +5 P+4x+5
7 /3 2 "
o ——I 2x +(8 )d —x"‘j x-!-:l 4+(8/3)dx
x> +4x+5 X~ +4x+5
Ix +4 -4 3 4 3 —4/:
—x~—J. i ;_J- +(8/ ) :x——3—ln(x‘+4x+5)*—J- > S dx
X" +4x+5 X~ +4x+‘5 2 2 x"+4x+5
x-imu +4x+5)- 2j dx (1)
x> +4x+5
From part (i) I dx =tan "' (x +2) . Thus (1) becomes:
+4x+5
XT+x+1 3 > "
J‘—,———_dx:x——ln(x‘+4x+5)—2{un (X+2)+¢C
X +4x+5 2
Example 03: Evalualc_[ 41 dx
x4+
So!ution Consider
B I—x" +1 X +l —|
I—I 2 dx-—— dx =— x_+_— — X — — X
x  +1 Jx +I '[ xt+1 '(x +] '[x +l

d —I X (l+l/x ) dY=I“+”x ) dx

Now consider, T, -—_[ X2 (x? Y4 1/x%) ' ('\‘+I/X1)

Lclz-x—l/x'-)di_(l+lfx ydx. Also 2 = x° o4 DX + 1/x>=2z" +2. Thus

) Z 1 _|(x—ll‘<) 1 _,(x -1)

dz = ':—14-,;;.1‘_-‘,—:—;1;1
N e fﬁm NN e - RN

&

x* dx—j x'(lj—l/x”j) dx I(l 1/x%) ) 4x
x*+1 x“(x“+1/x7) (x*+1/x* )

[etz=X+ 1/x > dz = (1 - 1/x) dx. Also71—x2+”+llx 2 x>+ 1/x*=2"-2. Thus

| | \/_ X
(e " Z- ll(x—ux—Jﬁ
IZ _2 Izz_(ﬁ)' 2f "2 22 n(x—l/x+,/2)

B | ln(xl—\[’_’_x-—l)
ZJ_ (x2+\.5.\'—-l)

Thus equation (1) becomes:

Now consider, 1, =I
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S e | I ST SO (R *-V2x-1]
j dx-E[il 131_E e -——In +c

X +1 2. V2x 22 (P4 2x-)
REMARK: The above example does
nevertheless it is an im

solving this integral.

The following formul
I  x-a l I i x
5 dx =—1n and dx =—tan™' =
Ix“—az 2a x+a J‘x2+az a a
Integration of Irrational Algebraic

not belong

to “Completing the Squares Method”
portant type of integr

al. Students are advised to see the steps taken i

n
ae have been used here.

Functions

In this section, we shall study the integrals of form VP(X)/Q(x) where P(x) and Q(x) are
polynomials with Q(x)#0. The integrand may contain one

2 ol
a2+X' Dr\/XZ—a'

of the functions va? =x? 5

- In such cases, we know that following substitutions are made.

If the integrand contains: a* ~x2 Substitute  x=asin@

-

5" 5% Substitute

Vx2 —32 Substitute

Example 01: Evaluate the following inte

X=atanBorx =asinh 6

X=asecBorx=acosh
grals

I X+3 . =
(i) dx (ii) < - dx (i) | x°V25-x7 dx
J'\)x?+4x+13 '[ X" +4x +5 '[
ox 2 - .2-'3
(iv) jex\fl-e' dx (v) I X" +4x +5 dx (vi) X

Solution: (i) _‘IT?_—.L_—-—:dx :j

X

XT4dx +13 \[(x3+4x+4)+9 \/(.\-+2)3+33
X+3 I 2X+6 I
:-—J‘————‘-—dX'{"lJ d
29 JIx? +ax+5 2 :/x2+4x+5

——dx
ijx3+4
Letx+2=17 = dx = dz. Thus,
| + 23
+c
)
2X+4+2
(W) | ———dx = - [ dx =) =22 dx
X +4x +5 2° UxX+4x+5 2TVX P +dx +5
X
l 5 -2 |
:—J(x’+4x+5) (2x+4)dx+I ——————— dx . Thus
2 J{

-dx = —— dx
| .z W
dx = ——dz =sinh [“]H:zth |
j\/)(2+4x+l3 I\/13+32 3 \
] 2x+4 2)
X*+4x +4)+ |

X+3

5 12
*+4x+5
dx = (x +4X + ) N ]

I

— dx
Vx?+4x 45 2 172 J-\/{x+2)3+l
:\}x3+4x+5 +sinh_'(x+2)+c [see part (i)

);3\"'25—:(? dxPulx=5sinf =»dx=2 cos 0d 6. Then

[=[x*V25- x2dx = [25sin* 6v25-25sin” 8 (5cos 8) de

(iii) Let l:j
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=625[sin?6cos0v/1-sin’ 0 do = tszsj’sin2 Bcos’ 0 do

o 1—cos 2 R
=625 (l Co"“e)('.”“’sze] 5= (1-cos? 26) 6
W2 2 4

625[ | +cos46 625 I I
m ] S | §—— ——[cos46 d6
3 IldB I( > )de} 2 [9 2J.Idf) 2Ic0§ ]

625b 0 5in49]_625[9_5in46}=625(e_sin4GJ

7 G 4 (2 8 8 4

Replacing 0 by sin”! (x/5), we get
625| . -1 X 1 . ] K
l-—I 2J25-x? dx=——|sin”'| = |-—sin4|sin" — [|+cC
8 5/-4 5

(iv) Ic" 1—e?* dx:Puttingz=¢* =» dx =¢"dx. Then

I=[e*Vi-edx = [zVI-z [dz) [Vi-2%dz
Iz%xll—zzwt%sin"z [using I az—xgdx:%\/a:’—x2 +%sin"(?ﬂ

= -

Replacing z by e*, we get
I:I ' e dx == \/l— %x‘in"(c‘)ﬂ:
(v) I\ix +4x +5 dx nf\/(\ +4x+4)+1 dx = J-\f (x+2)" +1 dx

Letx+2ﬂ/ =>» dx = dz. Thus,
NzE+1 |

~ u+;sinh" Z+cC [Note this formula]

I x2+4x+5 dx:I w2\t 137 =

Substituting z = x + 2, we gel:

‘) ]
(x+2)l(x+ ) +] smh (x+2)+c
(x+2Wx>+4x +5

p)

I x2+4x +5 dx

+;sinh'(x +2)+c¢

9-ij3+4x+5 dx =

2 "
> el . "
(vi) = =dx : Putting x = 2tan 6 =2 dx=2sec"9d0. Thus
'[x\)x‘+4 ‘
-3 2tan’0-3 - an’ 09— |
J 2 an 2 2scc29d8='[ i ':) 2sec’ 0 do
xVx>+4 2tanOVtan’0+4 2tan0 2sec” 0
2tan” B— 3 2tan’ 0 3
= 0= de-3 dO=|tanBdO-=|¢
I 2tan0 I2lan9 J.Zlan[-) Ian 2-["Olede
3
=Ins 9-—-In(csc8—'0t8 +C
S€C 2 C ) | . (l)

Now, x = 2tah 8 = tan 6 = x/2 =¥ cot B = 2x. Also

e 2Y Jx*+4 g 2
cscB:\}l+cnl‘9:\/]+[—] =T , secO=Vl+tan" O = 1+(i] = 4+x
X 2

X 2
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Thus (1) becomes:

x*~3 {\/4+xz}gln[\/ﬁ+4 2}(:
2

———dx =In ——t
I xVx?+4 _ 2
Four Standard Cages
In this section, we shall stud

X X

y four important forms of i Integrations,
v FORM.I: Integral of the form -

e e
Linear factor Linear factor,

Rule to evaluate: Put JLinear factor =z

FORM-IL: Integral of the form :

dx
Quadranc factor,/Linear factor

Rule to evaluate: Py JLinear factor = z

dx

FORM-III: Integral of the fqrm I l

Linear factor,/ Quadratic factor
ar factor = 1/z

CASE 4: Integral of the formf : ——__dx
. Quadratic factor/Quadratic factor

l/y and in the resulting integral put \/Quadratic factor =z

dx
Rule to evaluate: Put Line

Rule to evﬁlluate: Put x =

Example 02: Evaluate the following integrals

|
(i) |- -dx
()I(2x+3)\/_— '[(x+l)\fx2—l
(iii) I

|
(iv) | —————dx
(x> +—’>>\+”)\/ Ixzdxzﬂ

| ldx
A dc |f
Solution: (i) Let | I(Zx W X { n IL:neMw/Llneﬂf:'

Put z=Vx+5 :>22=x+5 =2z dz=dx. Then
2zdz 2dz 2
1:1[2(22_5)”}(2) Izz ~10+3 -[ 7;2 J‘z

' Z_‘/— 5_\/772 +c-
I_lr Z+J_ \/— JE+ 7/2

x dx . x dx
ii = form
iELet ‘[(xz —-2x +2)\/x =1 [ J.(;)um:iralic: \}Linear]
Put z=Vx-1 = 22 =x—-]| = 2zdz=dx Then

(22+1)(22)dz (l+zz)dz
[=

=2
{(7_3 +1)2 ~2(2’ +l)+2}(z) I

z"+223+1—-222—2+2
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l+2° 22(”22 'H) o 141/
l=2j.l+zddz=2.f22(”zz +22)dz-2fm (1)

Put z—l=l = [I+L2)dz=dt into (1), we get

4 Z‘

N dt _ 2 a1 )= /3 an™ z-1/z) _ gz l—l
' 2I:+2 I[z+(\/5)1_\/§t (\/5} V2! [\EJ (2 [fzJ
S x—1-1 ]: ._1[ x—=2 ] ..
(iii)LelI=J—L [fomﬂf : I : :‘

(x +])~Jx2 -1 Linear,/Quadratic

Putx+ |1 =1/z = dx = -dz/z°. Then

= I LI P (-1/2*)dz
| J‘(12) [1—1)2—1( 22](] J‘(”)\/l-zufz-_l:

)
(-1/7°)dz -J( dz : I(I—"é)”dz

I=
'[I/ )\“—22 l—%
I-2 e =
I:l( z) r——l_zz_/ JH—I 2 \/x I i
2 1/2 X+ X+ X+

{i\:) Let l—j Q) f()lmj ]
x°VxZ+1 Quudrauc\/QuadruUCJ
Put x=1/y =»dx=-1/y* dy. Then

l:I (':]'yz)di’ =J_ (_l,'lyz)d}” _ ydy =__!_J. 2)’d}’
P er "y oy ey 2 iy
y*
| 2 -1/2+1 . § D
l:-»l_—‘_*——( 4 ) . USillng (x)dx'z{f(x)}
2] =1/2+1 ( )}“ -n+]1

2 51
]+)’ - i~
X :

Integration of Rational Trtgonometrlc Funct:ons
In this section we shall learn integration of function of the form

F(x)=f(x)/g(x)

Here 1(x) and g(x) may be any trigonometric function. In such cases we make the

o X 2 x 1 5 .
substitution: z=tan— = dzzsex’—.—dx ')dx=2dz/s.cc'-§=2dz/(ian'i+lJ= 2dz
2 2 2 S 2 9 2

< (z=+1)
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Also [dni=z=5:% :>H=\/P2+Bz=\j2.2+l NOTE: B = Base, P = Perp, H = Hyp

2 |

x P z x B |
Fsin—=—=—"_ and cosX=2 =

2 H 24 2 H 324 .

. 2
Thusunx-25|n—cos—-—2 1z } = zz
S S NZTHIVZ L 2+

And cos x = cos? ——-smz—=_l__iw_l‘z

2 24 22+1 2 4]
-)mnx-smxlcosx—in(l Z’)

REMARK: In the following few examples that are retated with the above topic we shall
make direct use of these formulae.

Example 01 Evaluate the following integrals

sin X
(i) I (ii) I ——dx (iii) I
<;1nx+cosx I+cosx +smx
Solution: Making the substitutions as shown above, we have
I 1 2dz

I . dx = ) bl i, 2

SINX +¢osx [22/(z“+1)+(z“—l)/(z‘+1)](2‘+1)

_ 2’ +1 2z 1 1

Substituting z+ 1 =y = dz = du. Also let 2 = 5 =5 (\5)- =a’. Thus (1) becomes:

l 1 - =2
j————._dx_zj'—,—;.duzz.lm ) T T S ) +C
$in X + cos x —a? 2 z+1+2

I | = lan(x/?)-i-l—\/i
SIN X +Cos X \/E lan(x!2)+1+~r

25 § [ 21 24 2 -
Gi) | :tcnotx(x_f[ z 1+Z_ 2dz 4[_”_2“]_{1_11_‘_2_](_&

(z'+l) rARS| 22+1)

1422
‘f[ |—l+zj| 2dz 2z | 2
zt 1

Substituting z = lah(xl2), we get:

= =1 +1)=1 28
o EE I
("')I tanx . | [ 22 } [ 2z }%dz - 22 1 |1+2+22] 24,
+‘;|nx 1-22 1+22 |22 41 1-2° 1422 22 +1
2z I+z 2dz
[1 z] |:(|+L) ]7 +1 4I (i 3 (1)
(1-2 z +l)
Now consider- Z :_ﬁ_+ B Cz+D
(l-z)"(z“+l) al+aG ) -2 15", @
e
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D z=A(l+2)(z* +1)+B(1-z)(z> +1)+(Cz + D)(1-2%) (3)
Putting 1 -z=0 = z=1in(3), we get: '
1=A2)2) DA=1/4

Putting | +2=0 = z=-1in(3), we get

-1=B(-2)(2) 2 B=1/4

To find C and D we rewrite equation (3) as:

2=AZ+Z+z+ ) +B(Z2+22 -2+ 1)+C(z-2°) +D(l -2

Equating the coefficients of:

z: 0=A-B-C 92C=A-B=1/4-1/4 =0

% 0=A+B-D=2D=A+B=1/4+1/4 =112

1/74 1/4 1/2
Thus equation (2) becomes: 22 = + +—
_ (1-2) (22+]) -z l+z 2z +1
‘ le |1 1 |
[ntegrating, we get:j 12 d 1 —]—dz+— — dz+=|——dz
(]_z)-(zz.,.]) 471~z 47 1+2 299 +1

=—-]—ln(l—z)+~l—ln(l+z)+ltan"' z+C
4 4 2

Substituting z = tan(x/2), we get:

1 1
J‘ dn.x dx:—lln l—taniJ+—-|n(l+lani +l[an'l mni +C
I+sinx 4 2) 4 22\% 2

t I ]
Orf l".x dx:——ln[l—tanl}r—lln I+ tan =¥ = 2+ C
1+sinx 4 2).4 2/ 22

J' s dx=-l- —In I—Ian-{)-!—ln l+tan§- +x+C|
| +sin x 4 2 2 ‘

//8.3 APPLICATIONS OF INDEFINITE INTEGRATION

This section is devoted to present a variety of applications of anti-differentiation or
indefinite-integration. In each example value of the constant of integration "¢ is determined
by given conditions imposed on the problem under discussion. When this is done, the
resulting solution 1s called particular solution.
Example 01: A company finds that the marginal cost when x units of merchandise is
produced is 50 — 0.08x dollars. If the fixed cost (overhead) is $700, determine

(a) the cost of producing x units

(b) the cost of producing 10 units
Solution: We know that marginal cost is the derivative of cost function. Using C(x) for the
cost function, we have: C(x) = 50 — 0.08x
Integrating both sides with respect to x, we get

C(.r) =I(5()—0.08x)dx =50x —93—8)(2 +c¢ = 50x —0.04:+c (1)

Since fixed cost (overhead) is $700 which is the cost when no item is yet produced. In other
words, C(0) = 700. This information is now used to find the constant c. Putting x = 0 and
C=700in (1), we get:

C(0)=50(0)~.04(0)* +¢ = 700=0-0+c = ¢ = 700. Thus,
a. C(x)=50x-004x’+700 [using (1)]
b. C(10) = 50(10) - 0.04(10)? + 700 = $1196.
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Example 02: A toy rocket is shot vertically upward from the ground With an initial
velocity of 300 feet per second. The acceleration due to gravity is -32 feet per sec’.

(a) Find a formula for the rocket’s velocity t seconds after the launch.

(b) Find a formula for the rocket’s distance above the ground at any time t.

Solution: (a) We know that the acceleration is the derivative of velocity, so, a = dv/dt.
The acceleration is given as -32, so we have: dv/dt = -32
Integrating both sides with respect to t, we get

v=[(-32)dt= v=-32t+C ()

To determine C, use the fact that the initial velocity is 300 feet per second. This means v =
300 when t = 0. Substituting these values into (1) yields

300 =-32(0) + C=>» C =300
Thus, (1) becomes: v = -32 t + 300 [using (l)]

(b) We also know that the velocity is derivative of distance. That is;

v=ds/dt =-32t + 300
Integrating both sides with respect to t, we get

s=j(—32t+3()())d[ :-%ﬁ +3000+C =5 = —16% +300t + C (2)

To find C, note that at the beginning (when t = 0) the rocket’s distance s above the ground is

zero, because it is shot upward from the ground. Substituting 0 for t and O for s into (2), we
get:  0=-16(0)+30000)+C =>C=0

Thus, (2) becomes: s=- 16t + 300t
Example 03: To test learning, a psychologist asks people to memorize a long sequence of
digits. Assume that the rate at which digits are being memorized is dn/dt =54 ¢
3 where *n’ is the number of digits memorized and t is the time in minutes.

(a) Find "n" as a function of t, which gives the number of digits memorized after t
minutes.

(b) How many digits will be memorized after 5 minutes?
~ Solution: (a) Here do/dt=54¢""
Integrating both sides with respect to t, we gel

n=5.4je4’-"az=—-—5'4 c?*+C = n=-18""+C (1)
—0.3

To find C, we use the fact that at the beginning (when t = (0), the number of digits memorized

is zero (that is, n = 0). Thus, putting n =0 when t = 0 into (1), we get

. 0=-18¢"""+C >C=18

Thus, the number of digits memorized (n) as a function of time (t) 1s
n=18-18¢”"=18[1-¢""

(b) After 5 minutes (t = 5), the number of digits memorized is

n=18-18"") =n=18-18" =n=18-18(2231) > y = 14,

Thus approximately, 14 digits will be memorized after 5 minutes.

Example 04: Determine the profit function P(x) that corresponds to the given marginal
profit: P*(x) = 70 — ", P(0) = -30 dollars

Solution: Here P'(x) = 70 - """, Integrating both sides, we get
I
P(x)=1{70-e72%"% )dx = 70x = ———e "% L C = P(x)=T0x + 100e " +C (1

__Pnl X=0and P =-30nto (1), we (gcl

-30 = 70(0)+100 (") + C = C =-130
P(x) = 70x + 100 "' . 130
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Example 05: A ball is shot vertically upward from the edge of a building with ‘init.ial
velocity 352 feet per second. The building is 768 feet tall. Acceleration due to gravity is -

32feet per second per second. _ )
(a) Determine the equations that describe the velocity of the ball and its distance

from the ground. o
(b) How far above the ground is the ball after 6 seconds and how fast Is it going

then?
Solution: (a) We know that the acceleration is the derivative of velocity. Therefore,
a=dv/dt =-32
Integrating both sides, we get: V= —32[1dt=-32t+C (1

To find C, use the fact that the initial vélocily is 352 ft/sec. This meahs v = 352 when t = 0.
Thus, (1) becomes, 352 = 32000+C 2C= 352

Thus, we have v =-32t +352 (2)
We know that velocity is the derivative of distance, that is:
v = ds/dt = -32t + 352 [from (2)]

Integrating both sides, we get

-

5= [(-32e+352) 3 4352+ C s =160 +352+C (3)
2

To find C, note that at the beginning (when t = 0) the ball"s-distance s from the ground is 768

ft, because it is shot upward from the building that is 768 feet above the ground.
Substituting 0 for t and 768 for s into (3), we get: - 768 = C
Thus, s = -16° + 3521 + 768 - = (4)
Hence the equation that describes the velocity of the ball is v = -32t + 352 and 1ts
distance from the ground is: s = 161 + 3521+ 768
(b) At t = 6 sec, we have from (4), s=-16(36) + 352(6) + 768 = 2304 ft
Also from (2), we have v = -32(6) +352 =544 ft/sec.
Example 06: A tourist accidentally drops his camera from the top of a cliff that is 576
feet above the water below. Assume the acceleration due to gravity to be -32fcet per
second per second.

(a) Determine the velocity v(t) of the camera at any time t during its fall.

(b) Determine s(t), the height of the camera above the water at any time t during its

fall. '
(c) How fast is the camera falling 4 seconds after it is dropped?
- (d) How long will it take the camera to hit the water?

Solution: (a) We know that: a = dv/dt =-32

[ntegrating both sides, we get: v =I(—32l)dl =-32t+C (1
Now. whent =0, v=0. Thus, 0 =-32(0) + C 2> C=0
Thus (1) becomes: v=-321 (2)

(b) The velocity is the derivative of distance, that is;
v=ds/dt =-321t [ from (2)]

2 .
Imegrating both sides, we get: s = J(-32l)dl Y % L= s TR+ 3)

Since it is given that s =576 ft when t = 0. Thus (3) becomes,
576 = -116(0) +C =22C=576
> s=-16t" + 576
(¢) Att =4 sec, (2) becomes, v = -32(4) =-128
Thus, the camera is being fallen 128 feet/sec fast, 4 scconds after it is dropped

4
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(d) When the camera hits the water, its distance will vanish, so from (4) we have

_ =-160+576 S 1=
Thus, the camera will take 6 seconds to hit the water.
Example 07: On the moon the magnitude of the acceleration due to gravity is less than

on the earth; it is approximately -5.3 feet per second per second. Consider a ball thrown
upward from the surface of the moon with a velocity of 120 feet per second.

(a) Obtain a function that gives the velocity of the ball at any time t.

(b) Determine a function that shows the distance of the ball from the moon’s surfa;ce
at any time t. e

Solution: (a) Given that acceleration a = dv/dt = -5.3
Integrating both sides with respect to t, we get

v=j(-5.3)d[=—5.3j1dt:>'v=—5.3t+c (1)
Since the initial velocity of ball is 120 feet/sec, that is: when t = 0. v =120. Thus (1)
becomes: 120=-53(0)+C = C=120

Substituting C =120 into (1), we get: v=-53t+ 120
This is the required function that gives the velocity of the ball at any time t.
(b) We know that velocity is the derivative of distance. that iS;

v=ds/dt =-53t + 120
Integrating both sides with respect to t, we get

s = [(=5.3t+120)dt = -2.651* + 1201+ C (2)
Initially the ball covers no distance, that is: when t = 0, s =0. Substituting these values into
(2), we get: 0=-2.65(0)+C =2 C=0

Now equation (2) becomes: s = -2.65t% + 120t

This is the required function that shows the distance of the ball from the moon’s surface at
any time (.

Example 08: The height h (in feet) of a tree is a function of time t(in years). Suppose you
begin (t = 0) by planting a S-foot tree in your yard and the tree grows to maturity

dh 1
according to the formula —=03+—, t>0

dt Ju

(a) Determine a formula for the height of the tree at any time t.
(b) Find the height of the tree after lyear, dyears, 9years, and 16years.

Solution: (a) Here dh/dt=03+1/J1
Integrating both sides with respect 1o t, we get

1/2 ;
h=j(0.3+——!—Jdt=0-3t+:72—+(7:>h=0-3l+2\/€+(3 ()

7

Att =0and h = 5. Substituting these values into (1), we get
5=03(0)+2J0+C S C=5

Thus (1) becomes: h=0.3t+ 2\/t_+ 5 . (2)
which is the required formula for the height of the tree at any time t.

(b)) Whent=1, h=03)+2V1+5=73 fi
Whent =4, h=03(4)+2J4+5=102 ft
Whent=9, h=03(9)+249+5=13.7 ft, and
Whent = 16, h =0.3(16)+ 216 +5 fi
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Example 09: From the ¢
spreading through the cou
(a) If n is the number of people who have ;h

ollected data, the health office e
ntry at the rate of 5t’

days, complete the equation dn/dt=............

" (b) If 50 people had the flu at the beginning o

that expresses n as a function of t.
(c) How many people have the flu after 8 days?

" Solution: (a) Here

dn/dt = 52272 + 22,

e

stimates that a flu virus is

A 4 22 people per day.
e flu at any time t, where t is the time in

Integrating, n = j(sﬁ’-‘ +22)dt=5_—+22t+C=>n = 3P +C (1)

(b) Nown=50and t =0, therefore,
n=3t""+50
23 | 50 = 146. Thus, after 8 days 146 people have got

Thus (1) becomes

(d) Whent =8, from(2) n= 3(8)

the flu.

Evaluate the following:

I.qu:+bx+cdx

Y

4. I[Jx"— v—ify dx

P +3x>+4
i e g s e ¥
==
10. jsin 2x J1—cos 2xdx

dx
S N
m-J‘sin(ln X)

X

dx

I‘).J.x'insﬂ cos’ 6 d8

) f.. 2 2
;Q.I\’;} + x~dx

Yy
25 [— Sin 2X

[o—
VI+cos™ x

28. I+- SmK _dx

2cos x + 7V cos x

3l. jm\'cc‘ x dx

34, j ,_i’}_ﬂ:_-_ dx

dx

a3

WORKSHEET 08
2 I&(axz +hx+c)dx

S.J‘(a2 —x:)j dx

8_[ dx
CYE L ¥=2

11. I(eainx +cxlna)dx

14. | 4‘:2

17.[_ﬁﬂ——dx
x>+7x+6
20. [sec’ 0 tan’ 6 db

23. .\J x? —a’dx
=

29 | x cosec” xdx

32| xsin”' x dx

35 jex_c_

X -X

e

X

dx

38 [
(2x+3)" +1

from (1) 50=3(0)+C 2> C=50

(2)

_3.[[\' +%T dx
0 j[xJ-in: +%}dx

X\ X

2
9. J(Zk+l] d

X + 1

12, [(1+x) 1= xdx

l—x
15.]’,/|+xdx

Xx+6

VX-+12x+7

21.jcsc“ecot‘ede

X

24, Ic°"“ sin X dx

& 1 — .
26. | —=rcosecVx cot+/x dx 27.”3““ +[sin x]J)cosx dx

30. jx“ In x dx

33. Ic‘“ cos(bx +¢)dx

36. I : £x -
V’F;L(]f.h\/x)

X+5

40.]’\[:)(.2

dx
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el e |
| —————dx 2. | ———= ]
| \/; | % dx 43. Ixcot xdx
44, '- x%e* dx 45.‘.'sin(|n x )dx 46. Ie" sec x (1+ tan x ) dx
-sin(1In x : _
41. | LI 4. [ 2R 49[ C o S
X “2x"-x-1 x —] (2x +3)
50. [—————dx st f—3 52. | 3“1 dx
7 x“=12x+35 Y 1+43e* +2e x-l (x+3)
r X dx —x*
53 | 2 s, ot 55. ji—zdx
(x—l)[x +4) X' —x" -1 : (l+x2)
56. [V5-4x - x2dx 57. j—w"—"-—_- 58. [— Sl
) V2x2 +3x+4 \}4sin2x+4sinx+5
dx dx x+l x+2
58, [onm T U 6. [ERUAAZY
J.(XZH)‘/; I(?.ux+x:)jlu J- VX +x =2

sin X
63. dx 64. d
I(|+C()SX)(2+COSX) '[ (1+x)( La —4x+1) ’

65. _[ COs X __COSX 66_[ sin X i 67 J- tan x
(sin X +cosx) " (sinx=cosx) ]+cosx

68. A tourist accidentally drops his camera from the top of a chiff that is 576 feet above the
water below. Assume the acceleration due to gravity to be -32 feet per second per second.

(a) Determine the velocity v(t) of the camera at any time t during its fall.

(b) Determine s(t) the height of the camera above the water at any time t during its fall.

(c) How fast is the camera falling 4 seconds after it is dropped?

(d) How long will it take the camera to hit the water?

(Hint: What is the value of s when the camera hits the water?)

69. To test learning, a psychologist asks people to memorize a long sequence of digits.
Assume that the rate at which digits are being memorized is dy/dt = 5.4e* words per
minute,"where y is the number of digits memorized and t is the time in minutes.
(a) Find y as a function of t, which gives the number of digits memorized after t minutes.
(b) How many digits will be memorized after 5 minutes?
70. The rate of change of the volume of a spherical balloon with respect to its radius is dV/dg
= 4xr”. Use this fact and the fact that V =0 when r = 0, determine the volume of the balloon
ghen its radius is 6 centimeters.

If the marginal cost when x units is produced is C(x0 = 100 - 0.5x dollars and the
overht ad cost is $40, what is the cost of producing 10 units?

72. Let R(x) be the revenue a company receives from the sale of x units of its product. If its
marginal revenue is R*(x) = 100 - 0.2x dollars per item, find the:

(a) Revenue function R(x) and the revenue from the sale of 20 units. Assume there is no

rgvenue when zero units are sold.
3. A woman gets into her car and then drives it with a constant acceleration of 22 feet per

second per second.
(a) Determine the velocity function.
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(b) Determine the distance function.
(c) How far does the car go in 6 seconds?
74. A colony of 200 bacteria is introduced to a growth-inhibiting environment and grows at
the rate of dn/dt = 30 + 2t, where n is the number of bacteria present at any time t (t is
measured in hours).
(a) Determine a function that gives the number of bacteria present at any time t.
(b) How many bacteria are present after 3 hours?
75. The weight of a mold is growing exponentially at the rate of dw/dt = e milligrams per
hour. How much will the mold weigh in 10 hours if it weighs 70milligrams now?
73. The rate of change of the temperature T inside a furnace after x minutes is
dT/dx = 2x + 15 (1 < x < 20) degree/min. Assume the temperature inside the furnace is
200°F initially.
(a) Find the formula for the temperature at any time X.
(b) What is the temperature inside the furnace after 14 minutes?
76. After t hours of production, a coal mine is producing coal at the rate of
dP/dt = 30 + 2t — 0.03t tons per hour. Find a formula for the total output of the coal mine
after t hours of production. (Note: Coal production P =0 at t =0).
77. The rate at which atmospheric pressure P changes as the height x above sea level changes
is dP/dx = -3.087 ¢ *'* measured in pounds per square inch and x is in miles. Determine P as
a function of x when at sea level, P is 14.7 pounds per square inch.
78. The rate of the change of the area of a circulartegion with respect to its radius is dA/dr =
2ntr. Use this fact, and the fact that A = 0 when r = 0, to determine the area of a circular
region when the radius is 4 centimeters.
79. The rate of change of the volume of a spherical balloon with respect to its radius is dV/dr
= 4 ar”. Use this fact, and the fact that V.= 0 when t = 0, to determine volume of the balloon
" when its radius is 6 centimelers.
80. Flu epidemic is spreading at the rate dn/dt = 180t - 6t, where n is the number of people
who are sick with flu on any particular day t after the outbreak started.
(a) Determine an equation for n as a function of t. Assume no one has the flu at the
beginning (when t=0).
(b) How many people have the flu the tenth day after the outbreak begins?
81. Plaque builds up on the inside walls of an artery reduces the diameter of the artery (and
thus reduces the blood flow). Suppose that an artery has a diameter of .4 centimeter and the
length of diameter (D) is decreasing at the rate of:
dD/dt = -0.03¢” """ cm/year.
(a) Determine D as a function cf t.
(b) What will the diameter of the artery be after 10 years?
82. A manufacturer estimates that marginal cost of a certain production process 1s given by

C’(x) =€ +3Vx , where x units are produced. What does it cost to produce 10 units if the
cost of producing 4 units is $ 2000?
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CHAPTER

NINE DEFNITE
| INTEGRATION

9.1 INTRODUCTION

The study of geometry includes formulas for de

lermining the area bounded by geometric
figures such as circles. (ri

angles and reclangles shown as under.
[

W

A = qr? A=bh/2 A=lw
There are occasions when We are asked 10 find the area under given curve. There are very
few cases when it is possible 10 find this arey by using simple techniques but in many cases it
1S NOL possible to find this area dyce to the nature of the curve. For example, consider an
equation y = x_ Its graph for values of x from 0 10 4 is shown as under: '

X: 0 l 2 3 4 A
y: 0 I 2 3 4 P4, 4)
4 .
At point P(4, 4) draw 4 perpendicular PM on the
X-ux1s. Thus OMP is 4 nght triangle and s are is V=X
A =Y (Base) (Height) = v2 (4) (4) =8
Thus area under the curve/line v = x between :
Y=0und x =45 8 unit’, : 0 Y —*
Now consider an Cquation y.= x"Its aruph for values of x from 0 10 4 15 shown as under-
X: 0 1 2 3 4 A
y. 0 [ 4 9 16 16 g P16

At point P4, 16) draw 2 perpendicular PM on the
X-axis. Now OMP is not a rnight triangle hence arca
under the curve y = x? between X=0and x' =4 can
not be determined using above technique. L :
NOW a question anises that, 1s there any method 10 m M
determine this arca. The answer 1s yes.

We can determine this area with the help of “Definite Integration™.
Definition: If f(x) = F *(x), we definc definite integration of [(x) between the limits

h

X=aand x = hus:_[l'(.\) dx:F(x)[: =F(b)-F(a)

¥

This s known ay “Fundamental Theorem of Calculus”.

Using thiy theorem, we see that area under the curve y = x° between x = Oand x =4 s
;i T 64
3 x 3 hJ
fx‘dx:~~ :-[4 ~(l‘]:— unit”
. 3, 3t 3
]

et us consider the curve y =

sin x. The area under this curve be
gnen by:

weenx “Oand x = s

——

187


http://www.itwebister.com

FARKALEET SERIES APPLIED CALC ULUS

n
: 2 A
Ism x dx = —cos "I; = —(cos n:-—cos()) =—(=1-1)=2 umt”. y
0 -
This area is shown in the adjacent figure. y = sinx

Let us consider the same curve y = sin X but now we take the
Values of x from x = 0 to x = 2m. The area is shown in the
adjacent figure. 0 n

v

n
Thus j sin x dx = —-cos xL:l“ = —(cos2m—cos0)=-(1-1)=0 unit’
0

Here total area under the curve is based on two parts:
The area under the upper part of the curve y = sin X fromx =0 0 n 2
to x = 7t is 2. This is shown in the adjacent figure.
The area under the lower part of the curve y =sin x from x =70 X = 2mis -2.
(This is due to symmetry). Thus total area under the curve y = sin x fromx=0tlox=2mn is
(2 - 2) = 0. This gives a concept of negative area though an area cannot be negative. But in
definite integration, we are cvaluating an integration over the interval [a, b] whose value may
be negative.
Thus one of the applications of definite integration is to find the arca under the curve
y = f(x) beltween the limits x = a and x = b.
In this chapter, we will develop the calculus necessary 1o determine the arca under any curve
y = [(x) or the area between [wo curves. We shall also study various applications of definite
integration. But for time being, let us study the most important topic of integral calculus
known as “Riemann Sums”.
Definite Integration as Riemann Sum
Consider an arbitrary function {(x) defined on a closed interval [a. b]. We shall assume the
following:

i, f(x) is continuous on [a, b]

ii. f(x) >0 forall x between a and b.
Al this time we have no means of determining the exact value of the shaded area as shown in
the figure below.

AN

y = fx)

o a b
To determine this area we divide the interval [a, b] in n equal sub-interval and construct the
rectangles, because it is an casy matter (o determinc the area of a rectangle. (The rectangles
may be of variable widths but for sack of simplicity we consider each rectangle of u':lmc
w;dlh). This is known as rgctungular approximation of arca under the given curve. The width
of each rectangle therefore is Ax = (b —a)/n.
The height of each rectangle will be the distance between the x - axis and the graph
measured vertically at the right end of each subinterval. This is illustrated in the figure given

=]

helow.
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y=/J[(x)

x
« a b

The approximation to the area under the curve y = {(x) improves as the number of rectangles
increases further, We find the area of *n° rectangles to be

A=I'(x,)Ax+f(x:.)Ax+f(x_1)Ax+...+f(xn)Ax =if(xi)ﬂx

Herea=xo<x;<x2<...<x,=b. The exact area between the graph of y = f(x) and the x —
axis (on the interval from a to b) is the limit of this sum as the number of rectangles “n°
approaches infinity. Thus, assuming the limit exists:

n—poa

A=1lim ) f(x,)Ax
I ‘

Saying that n — oo is the same as saying that Ax — 0 since the width of each rectangle gets
smaller and smaller as the number of rectangles increases. Thus, we can also write

A= lim 3 (%, ) Ax
=

Ax—0 i
This limit is given a special name and notation. It 1s known as the
function f(x) from x =ato x = b and is usually denoted by:

n h

A= lim 3f(x,)Ax = [£(x)dx

definite integral of

Ax—0)
=1

REMARK: The numbers a and b are called limits of integration, b is the upper limit and a
is the lower limit.
2

Example 03: Evaluate I.rzdx using the Fundamental Theorem of Calculus,
1
. 9 ] ‘\_]2 | 172 | 1 1 7
Solution: Xdx=|=x"| ==|x" | ==(2'=-1})=Z
m [eecs| 30| Al A )]
Example 04: Determine the (exact) area under the

curve y=J/x fromx=1tox=4.

Solution: We have f(x)= Jx,a=landb=4. Thus,

4 4 y2 ) .
Area = [xdx = [x"2dx =| X _ :l —x}'lw
’I[ ‘I'. (}zJi -3 ,||
2/ 3 A 2... 14 X
=g o] =57 =2.
W= =30)=3

The area between the graphof y = JX and the

The area under szIfrom x=Iltox=4
X = axis on the interval [1. 4] has been shown to be
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14/3 square units. This area is shown shaded in the above figure.

Fundamental Properties of Definite Integrals = - ' . ‘
[n this section, We shall discuss some important properties of definite integration which will

help to solve very important problems of integration.
b

b
Property 1: If(x)dx =If(u)du [P-1]

a a .
This property states that definite integral is independent of the variable used.
b

Proof: Let [ f(x)dx = F(x)= [£(x)ax = F(b)~F(a)- Similarly

a

b b b
]r(u)du = F(u)=> jf(u)du —F(b)-Fa) = ]f(x)dx - jf(u)du

a

ni2 n/2 .
For example, I cosxdx = I cosudu=1
0 0

b a
Property 2: If f(x) is an integrable function, thenjf (x)dx = —If (x)dx [P-2]
; 4 b
This property states that interchange in the limits of integration changes the sign of the
integral.

b
Proof: Let jl'(x)"dx = F(x)zjt'(x)dx = F(b)—Fa) and
a ' h
jf(x)dx =F(a)—F(b)=—|F(b}—F(a)]=—jt‘(x)dx

h
/2 0

For example, I cos x dx =1 whereas I cosx dx =-1
0 n/2
h 2 b
Property 3: jf(x)dx = '[f (x)dx +_[l' (x)dx, where a<c<b (P-3]

This property states that if ¢ is any real number that lies in the interval [a. b] then integral
from a to b is equal to sum of the integrals taken fromato ¢ and then fromc to b.

. b
Proof: Let, jf(x)dx = F(x) > jr‘(x)dx = F(b) - F(a)
G b ’ .
Iffx)dx =F(c)-F(a) undjf(x)dx =F(b)-F(c)

« b
. b
Now If(x)dx+[f(x)dx=Hc)~F(a)+F(h)—F(c)=F(b)_F(u):J‘f(x)dx

n

For example, Isin xdx = —[cns x]; =—(cosM—cos0) = —(=1-1)=2
0 -

n w2 i

Now consider, j\'m xdx = j sin x dx + j

n/

0 v} Sin xdx - —{[COS x];n +[COS x]::!"}

-
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= —[cos(nl2)-cos(]+cos1t—cos(1tl 2)] =—{0-1-1-0]=2
We see that two results are same,

Generalization of Property 3

da

If(x)dx =‘I] f(x)dx +JJ; l‘(x)dx+]}f(x)dx +oet T f(x)dx+ ]' f(x)dx

a2 n-| in
Here,a<a, <, <. < a,<b.

This means that if the interval of integration [a, b] is divided into any finite number of
subintervals, the integration tak

¢n over the interval [a, b] is equal to sum of the integrals
taken over the subintervals
Property 4: II'(x)dxzj-i'(u—x)dx [P-4]

0 0

This property states that if the lower limit in any definite integral is zero, the value of the
integral remains unchanged on replacing x by “upper limit minus X “in the integrand.
Proof: Letu=a-x = dy = dx. Also if x =0 the u = a, and if x = a then u = 0. Thus

a 0 a a

jf(a: =5 Jidn = ~If(u)du :Ii'(u)dtl :II'(x)dx (Using properties 1 and 2)
0 3 0 0

/2

‘ n/2
For example, consider, I cos X dx = [sin x ]“

0

=sin(m/2)=sin0=1-0=

n/2 /2

Now consider. I cosxdx = _[ [cos(m/2)— x|dx =
0

/2

I sin x dx = ~[s.‘u~; ‘(];I =1
0

0
We observe that the result of both Integrals is same.

REMARK: It may be noted that cos [(m/2) - x] = sin x.
Geometrically this property states that “arca under the curve y=1I(x) fromx =010 any real
humber X = a is same as if the curve is shifted *a° units to right or left from the origin. This 1s
depicted in the following figure.

A A

f(x) f(x = a)

0 > 0 a -
We observe that the shape of the curve is same but it is shifted “a* units to the right of the
origin. Thus area under both curves will be same.

)
-

Property 5: I f(x)dx ———J.f(x‘)dx +J-1'(2a - x )dx
0 0 :

[P-5]

0

2a

0

Proof: By property 3, J [(x)dx :If(x)dx+ I f(x)dx
0 a

(=

But | f(x)dx = J't (2a = x )dx. [Students may verify this by letting u =24 - x].
Thus, JE()dx=[r(x)de+ [r(2a-x)d
0 ] 0
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Property 6: i. bjf(x)dx=2.[f(x)dx, if f(2a—x)=f(x) [P-6)
0 0
ii. ]f(x)dx=0, if f(2a-—x)=—-f(x)

0

Proof :(i)-jl f(x)dx = [ £ (x)de+ [ £(x)dx =
0 a

a

If(x)dx+]f(2a—x)dx [By P—4]

0
=]f(x)dx+-[t'(x)dx:2]-f(x)dx [+ f(2a—x)=f(x)]

0 0
f(x)dx=If(x)dx+Jf(2a—x)dx [By property 4]

[ f(2a—x) =—f(x)]

For example, consider I cos x dx =[sin x](']ﬂ =sin2n—sin0=0-0=0
. 0

And Icosxdx+jcos(2n x)dx = Tcosxdx+f cos X dx —2Icoxxd(
0

0 0 0 0

=2sinx ] =2(sinw—5in0)=0. Thus LHS = RHS NOTE: cos (27- X) = oS X,

(ii) We know that sin (27- x) = - sin x, hence

sinx dx = —[cos x]grt = ~(cos2n—-cos0) =-(1-1)=0

oy

Property 7: If f (x) =f (a+x), then j’r dx:nfr(x)dx [P-7]
0
Pmorj dx~jf dx+f dx+j )dx +...+ j dx (1)
(n=Da

[n the 2“d integral on the right hand side SubSlIlUlC. x=a+u=>dx =du.
Now if x =athenu =0 and if x = 2a then u = a. Thus,
If(x)dx =If(a+u)du=_[f(a+x)dx =If(x)dx

SJmllarly in {ht. 31 mlegral on the right Slde of (1) if we make the same substitution, we ge[:

Ir dx~jf

Proceeding in this manner we shall s that eachintgral o the right sid of (1) i equal to

jf[x)dx.
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Thus, I (x)dx —n_[f )dx provided f(x)—t(.H—x)
0 0
For example,
- . d _ . In g .
n I cos X dx =n|sin x]o =n{sin2r—sin0) =n(0-0)=0 [ cos(2n— X) =cos x]
n
inn n
I cosxdx =n j cosxdx =nsin x] " =n(sin 2 —sin0) = n(0-0) =
0 0
We observe that LHS =.RHS.
Property 8: [P-8]

X )dx ="If(x)dx
a 0

~ If f(x)is an odd function of X, then: I f (x_)d\ =

» Iff(x)is an even function of x, then: I t

Proof: Let f(x) be an even function. that is, f(-x) = f(x). Then
a 0

jl‘(x)dxz'[ dx+j1( dx—} f(=x dx+J'| )dx.. since f(-x) = f(x).

-a - -a Q

Put =x =u in the 1" mlu*ral then dx = -du. If x = -athenu =aand if x =0 thenu = 0
Thus,

0

If ——_[t du+jf dx—Jf du+jt dx—J-! x)dx+_[f[>. jf(x)dx

Now let f(x) be an odd Iuncuon that is, f(-x) = - l(x) Then
a 1] 0

If(x)dxzj dx+_[f dx—J- (x dx+_[ x)dx, since f(-x) = -f(x).

=d -

Put —x = u in the 1™

Thus,j (x dx——J‘[ clu—_[f dx—ji (u) du—J'I X )dx

—d

-a 0
mlcwal thendx =-du. [ x =-athenu=aand if x =0 thenu = 0.

0
-II (x)dx - II x Jdx = 0. This proves the result.

REMARK: If t(,\) is some funcllon of x such that f(-x) = f(x) then f(x) is known as cven
function and if f(-x) = - f(x) then f(x) is known as odd function. If these conditions are not
satisfied, then function f(x) is neither even nor odd.

For example, let f(x) = x> + cos X then: . .

f(-x) =1 x)l + cos(-x) = x> + cos x = f(x). Thus f(x) is even function..

Now consider f(x) = x* 4 sin X, then: ‘ | . | -

f(-x) = (~x)3 + sin(-x) = -’ —sinx = - (x’ + sin x) = -f(x). Thus f(x) is odd function.

Now consider f(x) = x* + I, then: ‘

f(-x) = (-x)* + 1 =-x' + 1 # {(x) hence, f(x) is not even function. Morcover,

f(-x)=(-x)' + 1 =-x’ + 1 =-(x’ = 1) # -f(x) hence, f(x) is not odd function.

Thus f(x) = x* + 1 is neither even nor odd function.

Also, cos(-x) = cos x and sin(-x) = - sin x.
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REMAilK: _[l" (x)dx =(. Geometrically this means that area under a vertical line x = a 1s

a

ZE€r0.

™ a ¥

3 - . . 3 - . .
is an even function and f(x) = x 1s an odd function.

=

o

Example 05: We know that f(x) = x
Hence we may see that *

4 E 4 4. 3 4 5] 1
[ xiax=| > _Vea—(-64y1= "2 Also 2[x?dx =2 X ZZea-0)=
% 3 . g 3 3 3

0 0

w3
o0

This shows that LHS = RHS.

4 4T
Also, jx‘dx: ’ﬂ :1(256-256)=0
_4 L __‘

With the help of these properties we are now solving some important definite integrals.

Example 06: 1 valu.llc the following:

n/2 n/2 w2 4
SIn K

(1) I X (u)j In(sin x)dx (ii1) Iln(lanﬂ+ml8}d8 (1v) I ln[l+mn\)d\

0 \‘slll X +VCOSX

Solution: (i) Using P-4;

(T h
2 / S '—X
let, 1= | sinx |
(@ = = X = - — UX
, Vsinx + \fu)sx ” , S S
: .‘m + LOSL X J

\!(.n\ X

-> ——dx

\/Ciob\' +\,F1n X

Adding the two ruull\ we ﬂct

N xln X + v COS X 2 1_7.[ T , T
“’[—j ———dx —J‘ldn-; = —()1:— =] =
\fmsx+\smx 2
= e Jsin x T
[hus, | = J == dx =—
5 \;m\x+\/sm< 4

n2 L n?
(ii) Using property 4, let 1= I In(sinx)dx = I In[sm(g—\ﬂd j In(cos x)dx
0 0

NOT[:' sin(f/2 — X ) = Cos X. Thus

n/2

1= I In(sinx)dx and 1= I In(cos x)dx . Hence,

/2 n/l n/2

2= I In(sinx)dx + j In(cos x)dx = I [In(sin x)+In(cos \()Idx
0 0

n/2 n/2
1 7
; _ 1, sin 2x
j In(sin xcos x)dx = _.' In( sin xcmx)dx = I In ( = de [2sinx cos X = sin 2x]

0 e 0

P
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I In(sin 2x)d | i "
= X~ o
;'; n2dx = I In(sin 2x)dx — In2j Ldx [In(ab) = 1ng -In b]
n/l ) 4
- TN _ /2 o
}[ In(sin2x)dx ln?.[x]” = j In{sin2x)dx -g-ln?.
n/2 A 0l 2
‘Thus. [= j In(sinx)dx = .- I In(sin2x)dx —-—InZ (1
0
Now pullmu IX=ud2dx = du = dx =dun
AlSO X =0 then u = () an Ix=mn2 4=
n/2
Thus, j In(sin2x X)dx = —Iln (sinu)du = —Iln Sin x ) dx [Using P-1)
0 0
Now sin x = sin (7t = x). Thus using propcn) h we gel
r/2 i
| . | n/2
;[ In(sin2x)dx :Efln(sm X )dx = o2 J In(sin x)dx = I In(sin x)dx =1
0 -0 0
Thus (1) becomes,
ni2 . I T 1 T [ T
1= In(: X S—=1=Z[g2 ~—l=——=In2 X Y )7
{ n(sinx)dx 2( 4ln_ =51 2[ 4In_ 23 In2
n/2

2= j In(sin x)dx :—21112

0 &

L5 QA Csing cos 8" ( sin‘18+co~.39\
(i) = j In(tan 6 +cot ) do= _[ln it JdB Jln _— E 4]
: cosB sinB sitnBcosH

f [In sin®+ In cosﬁ] do

)]

_[ Insin® do - I IncosO do = 2! Insin® do [In1=0]
()

1]

j ln — )d@ I[ln[l —ln(xm(ﬂmsﬁﬂ de = -
0

\\m (Juu()

rw

\

[\I()Tl: j Incos® do = jtnma\ 50 }de Iluxm@ deJ

/

Thus. | -—'—?.(~;1n 2}27{11\2
\

[See part (ii)]

n/4 r N\ n/d
[In|l+—la.nl ——X .l X j
1]

7/
{)

¢ r[ Tea
(iv) Let [ = J' In(l+ tan x)dx = In[l+mn(2 )Jd\ [Using property 4]
'r
1

lan(mt/4)—tan x J

[+ tan(m/4)tan x
nl4 r KIJ

|- - tanx I+ldn\:+l tan x i
:Ihl |+ —— ‘l = ‘ -
| I+tanx ” L an ;
§]

J-ln

dx = J [In2~In(l+tan x)]dx
I+mn\1
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/4 /4 n :
=ln2] 1dx — J- In(1 +tan x)dx—an[ ] 1= 4ln.’Z
0

/4
Thus 21==1n2 ::>l=-18£1n2.Thus 1= | 1n(1+1anx)dx=gm
4 -0

REMARK: The following formulae may be noted.

T _1-tanx (T ) =cotx
(a) sin(g—x)zcosx (b) “‘"(Z—x)'manx () lan[2 ]

(d) sin(m—x)=sinx (e) cos(m—x)=—COSX (f) tan(n—x)=—tanx

Example 07: Evaluate the following integrals

0 X’ if x<2
(i) If(x)dx. where f(x):{

5 x=2 if x>2
4

2 2 4
Solution: Il’(x)d :It(x)dx ]. )dx:sz dx+j(x—2)dx
0 2 0 2

o

In/d

(i) Ilcosxldx

x = 3n/d x=n/2

in/4 n/2 Inld

Solution: I lcosxlcb.— Ilcosxidx+ J. | cos x dx | =0 7
0

Now we know that in the I
negative. Hence,

n/2

quadrant cos X 18 always positive and in the " quadrant it is

In/d ni2 in/4
/2 . In/4
s lcos x ldx = Icosxdx+ I —cosxdx = [sm\] [sm x] -
nfe
0 0 n/2

=[sinn/?.—sinO]—[sin31t/4—sinn/2]:I—O—II\r’E—lzﬂll 2

n
aes 9
(iii) Icos““*' x dx
0

n n -

Solution: Icosz"*' X --j an 5 = 2 ¢\ ' -

0 xd cos xcosxdx-—”cos x) cos x dx =J-(l—sm2 x) cos x dx
0 0

. . 0

Putting z =sin x = dz =cos x dx.

Ifx=0 = z=sin0=0andifx=n => =sinmt=
, z=sint = 0. Thus,

icos2n+| xdx = I(l—— 2’ )" dz=0.

0 0

/2

Notice that upper and lower limits of inlcgratibn are same
(i) [ In(tanx)dx

m/2

Solution: Let I'= | In(tan x)dx . Usi
'([ ) - Jsing pl’Oer[y 4 we hde
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n/2 /2
1= I tan x In (sin x )dx = I ln(tdn[g—xnd = I In(cot x)dx
0
n/2 -1l n/2
= I[ln(tanx)] dx=—j[ln(tanx)]dx.
0 ’ 0
n2 w2 /2
Thus, I+1=2F= I In(tan x)dx — I In(tanx)dx =0 = I= I In(tan x )dx =0
0 0 0

nl2

(v) J’ sin 2x In (tan x ) dx
0

n/l

Solution: Let 1= .[ sin 2x In(tan x)dx.'Using [P-4]

0

2 r/2 '
. T
I= I sm2(5—x)ln(lan[g—xJde = I sin(m—2x)In(cotx )dx

0 0

n/2 2 /
= I sin 2x In (tan x )7' dx = —I sin 2x In(tan x )dx
0 0
w2 n/2
Thus 1+1= J- sin 2x In(tan x )dx — I sin2xIn(tanx)dx =0 =21=0
0 0
/2

2> 1= Isin2xln(lunx)dx:0

0

X tan x
(vi) f ik
SeC X +cCosx
T Xtanx
Solution: Let I = [—————dx. Using P-4

0 SeC X +CcosX

lziﬂ_)f___dx:"f (n—x)tan(m-x) d<=]r‘ (m—x)(-tanx)

) SEC X +COS X e sec(m—x)+cos(m—x) " 4 (-secx)+(-cosx)
T : tan t
=‘“_{ tan x dix +_f Xtanx lx-n_[ an x dx —1
) —(secx +cosx) (secx +tan x) (secx +cosx)

n
tan x
P A=q| ——dx.
o (secx+cosx)

Notice that: tan(r = x) = -tan x, sec(m — x) = -sec x and cos(m — x) = - cos x. Thus
tan (11— x) —tanx _  lanx

[scc(n-x)-rcos(rt—x)} —SeCX —COSX  SeC X +Cos X
Now using property 6, that is, [ f(x)dx=2[f(x)dx. if f(2a=x)=f(x)

0 0

A= njh———_“"" dx = 2n _[ — % g (1)
secx+coxx) A sucx+cosx]
-__‘_-_'—-—-.._;
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n/2

Now, let I, = |

tan x

dx . Using P-4, we get:
(sec x +cosx)

0
( 1
an| - — X /2
i s et cot x COS X
I|=I d)s:J. - dx=J- , : dx
¢ n cosec X +sinx o sin x(cosec X +sinx)
. 0 gec| -—x |+cos| ——x 0
" cosx
= J- —dX .
5 I4sin’ x

Putting z =sin x =¥ dz = cos x dx.
Alsoifx=0thenz=sin0=0and if x=7/2 then z=sin w2 = |. Thus,

non X tan x T
Thus, 21 =2nt—=— = [= J.W_“dxz_
4 2 Sec X + cos X 4
(HI) J‘ s.m X i
¢ sin X +cosx
Solution: Let 1= [ —""dx. Using P-4, we get
SIN X +COS X

0

.2 I
r/2 sin 5 X n/2 oS
¥ a3 W
I = J. dx J- = % 5 W

- X = ——dX . Thus,
. T COS X + sinx
0 sm( —x]+cos[ ~x) 0
2 2
M2 sin? x ? costx M2 sin? x +cos> .
. . sin” X +cos”x |
lel= [ 05 dx [0 gy [ 20 j dx
J SINX+COSX ¢ COSX+sinx S sinX +cos x o SINX +cos X
/2 | /2 |
Thus, 2= [ ———dx . -)[-—J~~———dx _ (1)
sin X + cos X 2 4 sinx +cosx

0 0
Putting z = tan x/2 = dx =2dz/(1 +2%), sin x = 2z dz/(1 + z°) and
cosx=(1- z (1l + z ). [See section 1.7 Chapter 1]. Moreover,

Ifx=0thenz=tan0=0 dl‘ld if x =7/2 then z = tan /4 = 1. Thus equation (1) bm.comu;
|

1 1+ 2° |
l=—| ———dx=-— 5 = d:
2ISIDX+C0§X -[27+l 22 1+2° '[1_[ —22_) ‘
— 72 2 -7 2
NOTE: sinx +cosx =- 22, l o ,Z 2 ] e HPT
I+z° 1+2° 1+2° sSinXx+cosx  2z+1-z°
| 1 I
Thus, I=I 2 : dz:I ] :j
o1-(2-22+1-1)  §1-(2? ~2z+1)+ 02—(z—-1)’
j[ l d?
: 2
U[\/-) 1-—] )
Substituting z — 1 =u =¥ dz = du. Moreover, if z = 0 then u = -1 and if z=1 thenu = 0.

Thus (2) becomes:
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0

_ 1 - \/—+u 1 a+x
l__j’]———-———(ﬁ) ~du = 7\!_ [I L NOTE: ja =l

] I:JE-HIT _ f+0 . \/—__1 i ﬁ-lxﬁ+l}
22 |2 N J_ 0 N2+ 2f " 2+l
(2-1) 1 1 1 -2
—~=|0-1In | = =———In(v2
e (V2+1) T (V2+1) 55"

= _x2In(V2+1)

22

n/2

Thus, 1= [ —2 % gx = in(VZ+1)
5 SIN X +COos X 2

dx .

(viii) I

1+sinx

n
Solution: Let I—I dx . Usmg P-4, we get

l1+sinx

T

n- T—
1= " dx= [ —dx = Zdx=f=——dx - X dx
nI+smx o 1 +sin(m—x) “l+smx Ul+5mx U]+~smx

n R
- T |
I=[———dx-I :21:] Tt sl=2[——a (1)
l]Hsmx ”I+51nx 27 1+sinx
n
Now,lel _[

1+§|ux

Putting z = tan .\f2 9 dx = 2dz/(1 + 2%) and sin x = 22/(1 +2°).
Also if x =0 thenz =tan 0 = 0 and if x = then z = tan W2 = w. Thus,

= o . +1) 3
L= 1 dx,]’ itz -2]’ dz—zj (z+1) 7 dz=2 @l
"l+sinx ]+z +2z 1+7° z+| -1
0
==2 ! =2 l—£]=—2[0—I]:’.Z.Thus cquation (1) becomes:
(z+1) |, o |
T T
l—j X dx=2T=n
1+sinx 2
n/2
(ix) _[(-——) dx
RILE

2 g 2
Solution: Let 1= I( . J dx
: sSinx

0

/2 % 2 r/2
I= I («———] dx = j x2csc? xdx . Integrating by parts, we get:
SN X 0
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Ly M2 /2
I=[x2(—colx)]" — I 2x.(—cot x)dx =—-[0—0]+2I x col x dx . NOTE: cot(w/2) =0
0 0

Integrating by parts again and notice that: fcot x dx = In (sin x), we get
r/2 x/2
I= 2[xln(<|n x) ‘.3 I l.In(sin x)dx = 2[-—lnsm( ;] 0}—2 I In (sin x)dx
0

Now, In [sin(/2) = In (I) =

nl”
Also we have proved that I ln sin x)dx = ——2-ln 2 [See Example 7 part (1))
0
M2 » )
Thus, 1= J’[ _ ] dx=—2[~ln2}=nln2
5 \sinx 2

n/2
(x) I In(tan x +cot x )dx
0

/2 A9 )
sinX  COSX sin” X +CO$™ X '
Solution: = j In( tan x +cot x )dx = I In + dx = I ln[ S |dx
COSX 5]“ X \ COSXSINX

n/2 ni2

n/2
= I ln[__._—l—_—‘Jd.\' = I [lnl—hl(cosxsin x)]dx = I [0=1In(cos x) - In(sin x)]dx
cos X Sin X -

w2

/2 n/2 w2
=—-I In(cos x)dx — I In(sin x)dx ——j In{cos ~*kﬂ I In(sin x)dx . (P-4)
]
S

n/2 m/2 2
- I In[sin x]- I In(sin x)dx = —2 I In(sin x)dx =

0
/2
Thus, I In(tan x +cot x)dx =min2

0

_g Jz nin2 [Ex. 7 (ii)]

(xi) len(sin x)dx

n
Solution: Let = [xIn[sinx]dx Using P-4, we get - X
0 .

I—I(n x) In[sin(Tt—x)] dx —I(n x) In[sin x]dx -rrj.ln[qm x]dx —Ix In[sin x ]dx

0 0 0

I= n:IIn[sm x]dx =1 :>2l——1rjln[sm x]dx :>l=§IIn[sin x ]dx (n
0 -

Let f(x) = In [sinx] P f(n—-x)= In[sm(n x)] = In [sin x] = f(x).

Thus using P-6, we get

n/2 /2

= -2—2 _[ In[sinx]dx =T I In[sin x]dx = (—Eln 2] = —1[2; In2. [See Example 7 (ii)]

ln(H—x) i

(xii) f
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Solution: Putting x =tan@ < qx = sec” 0.df. APPLIED CALC ULUS
Als? ifx=0thentang=0 9 O=0andif x = | then tanO=1 <»0=mw4 Thus
In(l+x) . ™ In(l+tan@ 14 w o
1= A e ) o2 In(l +tan@) i
! — j; T inTg e 0 do {Tsec-edhjmmwne)de
"n/4

= ! mDHan(nM ~0)] de [By P-4]

/4
I-tan® T 1+ /4
= | Inll1+ do = tanO+1-tan 0O _
'.! [ l+lan9] {I"[ d8= In

I+tan®
/4 n/d

I=1n2 [ 1d8- [ In(1+1ane) do =In2(e]"™"
0 0

< 2l = (W4). In2 > [ =w8). In2

n/2
(xiii) j sin x In(sin x ) dx
0

/2 n/2

Solution: Let 1= I sin x In(sin x)dx = j (sin x)ln[\/l—cos2 le dx

0 0
Substituting z =cos x = - dz = sin x dx.
When x =0 then z = cos 0 = | and when x = 7/2 then z=c0s /2 = 0. Thus,

(
I=—_fln I—zzdz=jlll{m]dz:%'i‘ln(l+zj)dz
I 0 0

4 6
Now Maclaurin’s series for ln[l-zz} :'——{22 +L—+-z3—+..}. Thus,

I 4 6 IS 7 !
l=—l AN N 2 dz=—l i :{——l—+—14+—1—+.._
20 2 <& 213 25 3.7 . 23 45 6.7
— .]_._l 1@ l_l +[l_lJ :{—l+l—l+_.} [Add and subtract 1]
2 3 4 5 6 7 2 3 4

1 1 1 _ _ 2
=ll—-——4+———+..|-1=In2-1=In2-Ilne=In| —
2 3 4 e

1 1 1
REMARK: In e = 1 and Maclaurin’s series for In2 =[I —E-i-g-——in..]

e COS X
(xiv) I —dx

5 sin X +Cos X
g cos X
Solution: Let I= I —————dx. Using P-4, we get
A $in X +CO08 X
n/2 :
2 _ 3 ;
=_‘. cos(m/2 —x) ) :_[ inx__ oy
i sin(n/’l—x)-&-cm(n/.’l*x) {, COSX +sinx
nl'2 . n/2 T n
sin X +cos X w2 _n
Thus, [+ = —_————-d:czj‘ldx:[x]0 —5 :>?.1—2
o SinX+cosx 5
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w2 "
CcOS X T
-)l-—-] — dx =—
N sin X +Cos X 4
% xsinx
(xv)[ —dx
1+sinx
0
T xsinX
Solution: Let I=I ——dx . Using P-4, we get
ul+s1nx
n . T n . T .
- - sin x
I=I(Tt X)sin(m x)dx I(n x)smx =1tj sm.x dx-_[x LI
1+sin(mt—x) 1+sinx 1+sinx l+sinx
0 0 Q0 0
% si . %] +sinx -1
1= SINX_ gx—1 :>21an L dx = NX7 dx
01+smx 01+smx 1+sin X
5 14sinx ! i
2[=nﬂ s ]dx=n][l— ]dx— jldx nj dx
0 l4+sinx l+sinx | +sinx | +sin X
T 1
=n|n-0]- dx=1"-T —dx (n
‘ ] jll+:>|n)c j‘l+§inx

Puttingz=tan x/2 =¥ dx=2dz/(l +2 7y and sin x =2Z/(1 + 2
Alsoif x=0thenz=tan0=0andifx=n then'z = tan W2 = w. Thus,

p T o1+t 2z p Z _ r(_zH)'| 3
!)lwnxdx_j S 2_2j( _dz= 2]74 d‘_QL ]0

e 422 1470 (z41) 0 =

==2 : =—2{L—£\=—2[0—1]=2.Thus equation (1) becomes:
(z+l) " oo |

.|

t i
X sinx -
2Al=1° —-1(2) zl:j —dx=—-"
”l+smx 2

n/2

. sin X —Ccos X
oy | SIEZCSX
o ] +sin X cos X

L e
Solution: Let 1= j de . Using P-4, we get
- 1+sin X COS X

e sin(r/2 —x)—cos(n/2 —X) M2 o8 X —sin X
= dx= |

’ 1+sin(t/2 —x)cos(n/2 —x)

—dx
% l+cosxsinx

N2 . )
$in X —COS$ X + COosS X —sin X
Thus [+1= j

A l+sinXxcosx

dx=0 =2I=0

2 xln X —COSX
_]‘ % =00

l+5mxcosx
n/2

<;|n X
(xvii)

dx
5 |+sin Xxcosx
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n/2 2

sin‘ x
Solution: Let = [ —
b 1+ sin x cos x

o sin® (/2 —x) iz 2

dx ._Using P-4, we get

COS“ X

]:II : B : dx-:j——-*_dx

o 1+sin(m/2 =x)cos(n/2 —x). 1 +cos xsinx

T
sm2 X + COs> X s |
Thus, 1+1= I _ dxzj-———dx
: , I +sinx cos x 5 I+ cos x sin x

n2 |
N= | —————dx (1)

" l+sIn X Ccos x ) '

Now substituting: z =tan x = dz = sec” x dx

9 dx = dzfsec’x = dz/(1 + tanzx) =dz/(1 + ).

NOTE:tanx=z=7/1=P/B 2 B=1andP =7z D H=B*+P’=1+7

Thus, sin x cos x = z/(] + 7_2). Also it x = 0 then z = tan 0 = 0 and when x = /2 then
z =tan W2 = . Hence, equation (1) becomes:

oo e

— I dz _ | +7° dz _m |
21_(,I+Z/(I+ZZ).(I+Z:)_;[|+z:+z'(|+72) “;[zz+z+]dz
=m l d’_T 3 : > d?.:m : _dz
o[# vz rriacara] [ v 4]/ o[z+a/2] +(V312)
2

z+1/2) "
=— tmf'(Ln ) NOTE: I dx:itan"(i]
3 \/ii’_’ 5 X~ g a a
2 1 b8
2[:7_3-[tan co—tan (IIJ_)J M[E

n/2

Thus | ——— —dx=—
;[ I +sinxcosx 33

9.2 BETA AND GAMMA FUNCTIONS
In this section we study two important types of integrals that have many applications in
applied sciences and engineering. They are (i) Beta Function (ii) Gumma Function

E}__l_[ﬁf]_zﬂ .
6] V3lLel 33 33

¢ 2
sin X

Definition: If m and n are positive numbers, then the definite integral j ml(1-x)""dx s
0
called Beta function of first kind and is denoted by B(m, n) (read as “Beta m, n""). Thus,
I
” -1
B(lﬂ.ﬂ)‘—‘j&'" '(1-x)""dx, m>0,n>0-
()
Beta function is also called Eulerian integral of first kind (after Euler, a great mathematician).
Properties of Beta Function
(i) Symunetry of the Beta Function: Prove that B(m.n)=pP(n, m)
1
" n-1
Proof: By definition. |5(n1.n)=‘|‘xm "(1-x)""dx, m>0,n>0
0
Changing x by 1 - x, we get
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| |

)= [ (1) -1 ax=J-x) () 05 e (1-x)"" dx =B(n.m)

0 0

Hence, B(m,n)=P(n, m).

(ii) If both m and n are positive integers, then B(m,n)=

(m—-l)!(n—l)!

(m+n—U!

|
By definition, B(m,n) = Ix'“" (1- x)"" dx, m>0,n>0-
0
Integrating by parts taking u = x™"and v=(1-X)"" ' we get

ﬁ(m,n)=[x'“"x%] - (I__X) (m—l)x'“‘zdx=(0—0)+m'l'fx'“”2(l—x)"dx

o N 0

m-ll
= X

07 (1 —x )" dx = T—B(m-Tn+1) O

n

Changing mtom— 1l andnton+ I in (1), we have
[5(m-—l,n+|)= ﬁ(m—?.nJr”)
n +
Substituting this into (1) we get

— =)
B(m‘n)zm | m ZB(m—2,n+2) (2)
n n+l

Repeating the abmc process, we ;:et
_( (m-2 ) fm—( }
B(m.n)= n(n+])...{n+(m 2)} Xﬁ{m-(m—l)-ﬂ+(m—*|)}
ad (m—l)(m«2)...1
B(my) n(n+l)...(n+m-2)

! !
But, B(],n+m—l)=jxr)(l_x)n+rln—2 dx=J‘(l—x)n”n_ dx

0 0

1 ': nnn—'.':l‘ |
= - = =—-— (0-1)=
n+m—l( *) 0 n+m—l( )
Thus from (3), we get
m-1)(m=-2)...1 m-—1)!
N (=
n(n+l)...(n+m—2)(n+m—l) n(n+|)...(n+m—-2](n+m—l)
NOTE: Denominator is written-in reversed order.
Multiplying (4) by (n - 1!, we get
A= (m=1)(n-1)! z(m-—l)!(n—l)!
(n+m—l)(n+m-—2)...(n+l)n(n—l)! (n+m-1)!
Corollary: B(1.n)=1/n
Substituting m =1 in above, we get

’ ___(l-—l)(n—l) (n-1)!  (n=1)! 1
B(1.n) (n+1-1)! Y _n(n—l)!“ﬁ

B(l,n+m—1) (3)

n+rm-—1I

4)
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! Example 01: Evaluate: j(B -x3 )—”]dlx

0
Solution: Letx’ =8z & x=27'"" > dx =2/3 x** dz.

Alsoif x=0thez=0 and ifx=2thenz=1. Therefore
2

I(g % ) mdx IB 8 —|/32 _34.3 IS._M I/SZ_z/:sdz

0

-

2 17 -1 1' ! 2.1 [1 2)
oty “ — — 1—- 3 d - - — |
3x203 (1-2) " dz 3{2 (1-2)3 dz 3[5 3

1
5
Example 02: Evaluate: Ix" (1 —\/;) dx
0
Solution: Let +/x = 2> x =z > dx =2z dz

Alsoif x=0thez=0andifx=1thenz=1. Therefore,
1

Ix4 (lf\/;)s dx =j(22)2 (1 —2)5(2z)dz =2jt9 (I—z)S dz

0

0
223(10,6)=2(10‘t)!(6*1)! 915! |

10+6-1! 15! 15015
_"‘
Example 03: Evaluate: j (1-x*)"dx
1]
Solution: Let x’ = 7 > x =z" 2> dx =1/3 () dz

Alsoif x=0thez=0andifx=1thenz=1. Therefore,
|

| 1
2 0L %3 Ue - -2 [ l)
1—x dx=|(1-z 2% j3de=— |z s 2dz=— e
=) I (=) (222 3)dr =2 [ 1-2) " g = 2{ 2.5
Two Other Forms of Beta Function

(I) We know that B(m,n)=

O ey =

x""(1-x)""dx, m>0,n>0.

Substituting x = sin’ 8 > dx =2 sin 6 cos 0 d6.
Also when x = 0 then > sinf=0 = 0=0.
When x = | then > sinf =1 =2 0=n/72.
™2 m-—I 4 n-
Thus I (sln 0 l—sin' B) |2sin BcosB do
0
/2
> B(m,n)=2 I sin®™™"@ cos®™' @ do

0
I

(I By definition, B(m,n)= [x"(1-x)""dx, m>0,n>0.

=

Putting: - =l-x= e LG y
I+y I+y I+y I+y

<2 yv=(1/x)-1. Ifx=0theny=w andlfx—llheny 0.
Finally, dk——dy/(l+y) Thus,

Also 1 +y=1/x
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-1 oo n-l
y

m,n)=- -——-————l —-—-“_n —_I'—' =[—F ¥
p(m.n)= Il+yr"' (+y)™ (1+y) Y +y)”

x"'dx is called the Gamma

Definition: If n 1s positive, then the definite integral Ic
0

function and is denoted by ['(n) (read as «Gamma n"). Thus,

T(n)_——je”‘x“"dx. where n>0-
Gamma function is also called Eulerian integral of second kind or it 1S also called the

“Generalized factorial function.’

By definition, r(n)= Jx"“e"dx ;
0
Putting n = |, we get:
- M v
]'(l):J' h "dx—-\!]lll'l J-cf" dx =— lim e"‘|(J = - lim (c"“ —e"):l~
0 0 = Mo
Now integrating by parts, we get
oo n— |1.\1 an
F(n)=-x""¢" —I(n—l)x"‘z(— )dx~= lim -—‘—| +(nvl)'[e"x'"_”"'dx
"0 D" Io 0
.M ,
=- lim —5 —0+(n-—i)l"(n—-l):(n—l)r(n—l)
—e €
Thus, [(n )=(‘n-—l)I‘(n*l)

By repeated application of this formula, we get

r(n)=(n=1)T(n —1)=(n l)(n—2)l"(n—2)=(n—1)(11—2)(n—3)l"(n—3)...
=(n=1)(n-2)(n-3)..3.2.1 r(1)

I'(n)=(n-1)! since, rg)=1 (n
This formula is valid only when n is a positive integer. For example, T'(5)=4!=24. In case

n is positive but not an integer, We Use the recurrence formula

r'(n)=(n-1)T(n-1)
v {2)-4(3)-22r ) $2303)- 5

REMARK: I'(1/2)=n [See below]
[n case, if n is negative integer, we may evaluate the gamma functi
r(n):( _|)r( o & r(n+] . ion as follows:
r(—4)=T(-4+1)/(-4)=T(-3)/(-4 Jrakle) = B =Fe. Srmamet
=1 (-3+1)/[(-3)(-4)]=T(- )“2
—r(=2+1)/(=2)(12)=T(=1)/(-24)
~1(0)/(~1+1)(-24) =T (0)/(0)(-24) = o

——
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Also notice that: T(O) = F( )10 =oo

This shows that if n is Zero or a neg
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ative integer ['(n) is infinite. However, if n is not a
negative integer, we use the formula I'(n-
For example,

r(i):r(-su):. r(-3/2) r(-1/2)
2) (-712) (—5/2)(—7/2)'(—3/2)(-5/2)(—7/2)

1)=T(n)/(n~1)t0 evaluate the value of I(n) .

r(1/2 4

(1/2) o 5 rlJz_'(LJE
(=1/2)(=3/2)(=5/2)(=7/2) 1357 \2) 703
Example 04: Evaluate [ x/"‘e~*dy

0

Solution: Putting z = \/_ 2=« =2 2zdz=dx. Thus

—x."i -7 T 2 -7 5
I W4 dx "J( C 2zdz =2J‘ z]’"e dz =2 r[}:) [By definition of Gamma Function]
0
_530(3) ;! I .
= *2— E -35r "2- :E\H [Nole:r(n):(n-])r(n~l)]

7
o -l'...
Example 05: Evaluate If e " dx

0

Solution: Putting z = {/; e A = 32z dz=dx. Thus

3= w2 Fry ) 0
J‘\/XC YU dx J-( ] e > 3z42 :3-[27/‘0 Rdg=3 F(J [By definition of Gamuma Function|

0 : 0
1 (1] 315 _ _ :
EF[EW— - [Note:I'(n)=(n-1)I(n-1)]

Example 06: Evaluate J e "l
0

Solution: Putting z = k’x’ > x=Vz/k 9 dx =dz/2kz . Thus

n-=| i w N

= A 7 2 i =l
]_—.I e | g dz Jz‘“"”“.x"“e"dz-——% 2zt et dze= ]n F[EJ
-k 2z 2kk™ A 2k 2k" (2

0

Example 07: Evaluate J—-— dx

Solution: Putting h*=e" = In(h*) = In(e") =2 xInh=z7
<2 x=z/Inh =>» dx = dz/ In h. Thus

on h o8 z Jl\ l ] on Y l
[= = —1 . dz = e LK dZ=————+ r(h+|)
h‘ ;[[Inh e’ Inh (In h)“'j (Inh)"™"
Relalmn between Beta and Gamma Functions
(m-1)! (n —1)!

(m+n-1)!

We know that,  B(m,n)=

-But F(m)=(m-1)!.
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______,_—-—————____-___

Using this formula, we get: B(mn)=—r—"+

p+1 (9t
w2 1r(‘5‘]r( 2 ]
\2)\2)

Example 08: Prove that I sin? 0 cos?8dO=—

+2
)

/2 I“(m) r(")
. 2m-1 2n-1 = -
Solution: We know that B(m,n)=2 _[ sin?™ 0 cos™"" 6.9 I(m+n)

0
Putting2m_—l=pand2n-—l=q D> m=(p+ 12 andn=(q+ 1)/2.

p+l q+l
LEINEY
Thus, I sin@ cos¥B dd=————"7""5

> 2 r(Eiﬂf%)
‘ 2

|
Example 09: Prove that: I’[E] =Jn

I'(m)I(n ,
Proof: We know that, B(m,n)= —(——)-—L—) Taking m = n= 1/2, we get

[(m+n)
1 1) T(1/2)r(1/2) [r 12)] . .
B(EE} r(1/2+1/2) (1) [I‘ (1/2 ] (oT()=1

n/2
Now, B(m,n)z 2 j sin2™'0 cos™ ' 0 dB
0

ni2

Thus, B(— l} 2I§1n"6cos 06do= 2Ild8 2[9] = gzn

)

Hence, B[l-l“)= r[l] =t = 4T —]-1 =n=>1 l\:ﬁ
P ¥ ) 2)
Example 10: Prove that: je"‘l dx = .;\/E
0

Proof: I.:et

z=x*>=dz= 2xdx:>dx-z\—/_—dz Alsoif x=0=z=0and if X De0e=>2Z o0
Z

Therefore, Ic"‘z dx = lj !
0 K 0

n/2
Example 11: Prove that [Jtane do="

ﬁ!

Proof: let 1= j Jtan® do= I sin© :T .
0

V2 =12
R B sin’ - B¢os 8 do

Using relation between Beta and Gamma function, that is
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n/
) . . r n/2
[i(m.n)=2-|-sm2 '9 cos? '9d8=—-(£1—[(—[-‘—) :l!sinz'“"ecosz""'9d9=w
! F(m+n) ~2) F(m+n)
Taking p= 112 andq =- (172) , we get
1/ -
r[if')r[izﬂj r(3 (L
=1 2 2 1 (4) 4 - 3}1.[1}
_-—_—_—'-—-———___ﬁ___:————-—-—___=— m— =
2 r(l_/22+1+:1/2+J_) 2 () 2 \4) (4
2

NOTE:T'(3/4)1'(1/4)= /2
= 1/sin nTt.Puuting n=1/ 4, we get:

F(3/4)I(1/4)= m(smnm):n/(]/ﬁ): V2r
9.3 IMPROPER INTEGRALS

Recall that definite Integration of a function y =

REMARK: r(1 -n).I(n)

f(x) between x = a and x = b 1s given by:

b

If (x) dx | provided integral exists.

d
Here the interval between a and b can be extended infinitely far in either direction. The three
possible types of intervals 4

re shown next. The corresponding integrals are called “Improper
Integrals.”

Interval Integral
[a,) jf(x_)dx
(o=, b] If(x)dx
(o) [ £(x)ax

An integral with finite limits a, b (say) can

also be considered
integrand f(x) becomes infinite within the f

as an “Improper Integral” if the
inite interv

al of integration. For example,
2 3
I——dx and I—%dx
o Xx—1 e S
are improper integrals.

In order to motivate a definition for the improper integralj.f(x) dx, let us consider the

a
b

following definite integral: If(x) dx- The following figure shows the area under the curve

a

f(x) for larger and larger values of b.
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! [

The area under the curve for larger and larger values of b
Thus, the improper integral from a to oo can be defined as:

If(x) dx = lim If(x) dx, Vm >a

provided f(x) is continuous on the interval [a,s)-

Example 01: Evaluate the following improper integrals

(i) j\/;dx (i) j%dx
1 ik
Soluti . m\/_d ; " l'ld ; .'(3‘2 A 2. 32 32 vy~ 3/2
Ol.llon.(l)_[ X x—lll_r’rl‘[(x) K—J!_L"rl 372 I—ngl[h -1 )_;hh_rll(b —l)—>oo.

Hence given integral does not exist.

o b —1 b
(ii)!%d =éi_ljl_|l.(x)_'dx=lim[%} =_nm&—ﬂ
|

beo| — bH—yen J

I

-(0-1) =1

Note: The integral evaluated in part (i) is said to be divergent, since it has no finite numerical
value. By contrast, the integral in part (i) is said to be convergent, since it has a finite value.
There is indeed a finite area under the curve.

b
Tmproper integrals of the type j f(x) dx are defined and evaluated in similar manner. That

—s

I8y

m—s—o

f—e

f(x)dx= lim }f(x) dx

provided f(x) is continuous on the interval (—o,b]:

7 dx
Example 02: Evaluate j (4—x) 5
Ll #—%

;) .5 ) d—x - -2
Solution: I gx = lim J.(4_x) 2d)-;: lim {—(_L)

4—X)2 a——oo a——o=

—on a

T [1 | I
= lim =lim|—-———— ]| =—
a—o—mtcl—x N 6 4-a 6

=

Improper integrals of the form If(x)dx are defined and evaluated as follows and be

—o0

cvaluated accordingly.
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T f(x)dx = j l'(x)dx+}f(x)dx

]

provided that integral exists. If either (or both) of the two integrals diverges, then given
integral also diverges otherwise, it converges.
Example 03: Evaluate the following improper integrals

(i) ] Jx dx (ii) ]:.re_"zdx

x +1

=0 ]

Solution: (i) Consider J dx. Substituting x* =2z = 2xdx =dz=> xdx =dz/2.

X +1
X 1/2dz 1 | . . L .k
Thcnj 3 dx:\j = :—I ;——dz=—tan"'z="tan '(x')-
X +1 27+ 277274 2 2
0 ” = 0 b
Now, :_[ —dx +_[ —dx = Iimj dx+lim‘j 4' dx
" G o X +1 ames X+ b X" +1
r all] b
. I _| a9 2 I ,] 2
=lm|—tan 'x" | +lim —tan x°
A—r—a0 2 5 bh—e 2 a
1 . = i 3 I . i\ \o _
=— ] 1(tun "0-tan 'a’)+-—l:m (tan 'b? <tan '0)
2 a>—oo 2 b
X . o N\ MY A )
= I 2 dx =—=— lim tan 'u“+-hmlan o2, [ +— Ei-—-{)
X +1 2a——= 2 b= avz) 2\2)

—oa

. . sz . u 2 l
(ii) Consider Ixc dx - Substituting x* = z=5 2xdx = dz = xdx = ;dz- Then
Ixc ‘zdx X vl-Ic"d;: = le" (-1) :_—]c"1
2 2 2

0 0

4 - b
2 QaN: 2 ) 2 . .2
Now let, I:J-xc"" dszxc : dx+Jxe Y dx = lim jxc t dx+hmec Y dx

Ao b—jee

—oc 0 a 0
*-I\! 2 0 5 —I\ _\l-h -1 0 _ 2 ] b2
= Lim| — J[c‘ } +Lim —~J"L J = — le(c ~g )—~Lim(c' "'CU)
1| 2, a b= 2 )10 Jy 245 2 b -
. I ! |
==—1-0)-=(0-1)==-=+—-=0
2> I 2(l 0) 2(0 ) 2+2

9.4 REDUCTION FORMULAE

Definition: Reduction formula is a formula that connects a given integral with another
integral which is of the same type but of a lower degree or of a lower order. .

We have already discussed such formulae in the previous Chapter however, we shall now
discuss them in the light of “Definite Integration”.

. -l
cosxsin" ' x n

. =2
We know that: (i) Isin” x dx =-— + Jsm" X dx
n n-|
. n-1
. Sinxcos' X n 5
And (i) J‘ms" X dx = + ]'fcns" x dx
n n-

Now sin 0 = sin=sin 2 = cos w2 = 0. Thus, if the limits of Integration are taken from 0
lom/2or O towor 0o 2 x, the first term on right side becomes zero. In this case, we have:
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m’2 n
ni2 n—1 ,

(a) j' sin" x dx =B I sin"™* x dx (b)jsm x dx =—— |sin" ™" x dx
9
—11“ _r:IZ fi— 1rr!2 "
(C)Ism xdx—-——jsin“'zxdx (d) Icos x dx=—— Icos" x dx
o n %
(e)jcos x dx =——jcos" “x dx (f) Icos x dx '—1—1_—— _"cos“‘2 x dx
0

Example 01: Evaluate the following integrals usmg reduction formula.
/2

(i) Isin°x dx (i) jsin x dx  (iii) I cos’ x dx
0

6-1° 5 4-17F 53 2-17..
Solutlon (i) Ism xdx- ” 0sm“'xdx:g. 1 _l[sm xdx_—6- Z.—z—_([sm(’x dx
' 2n
5 n 5 5n
Thus, [sin®x dx=— [1dx==[x]~ =—(2r)=—"
* !S' e 16-[ T RETAS
2n 2n 2n 2n
6 6 4 24 27 . 16 2
.o . 7 _o A I N
(ii) Ism xdx-7£ in® x dx = 5!51“ x dx 5.3}[5m x dx 3% cosx]o
2n 16
Thus Iem x dx =———[cos2m cos 0] ——[1-1]=0
e -
/2 2 /2 N2
4 24 2 .
(iii) Icos’ x dx =—6— cos® x dx -E — | cos’x dx =—.= j cos' x dx :l—q[sm x]::/2
5 7% P 3335 o’
n/2 ‘ 16

| 1
Thus, I cos’ x dx = —6[sin(n/ 2)—sin 0] = gg[l —-0]=—
0
Reduction Formula for _[sm Px cos?x dx

The mleoralj.qm x cos® x dx can be connected with any onc of the following Six mtegrals

to get a reduction formula for it.
(i) I.wn”'.\ cos®x dx (i) Ism x cos™x dy (i) J'.vin”*zx cosTx dx

(iv) J’sin"’x cosx dx (V) J.sin""zx cos?x dx (vi) Is:'n””

Thus, in finding a reduction formula for Isin”.t cos”x dx , we may

.2
x cos? x dx

e Decrease or increasc by 2 the index of sin x leaving that of cos x unchanged as in (i)
or (it). : :
e Decrease or increase by 2 the index of cos x leaving that of sin x unchanged as in (iii)
or (iv).
e Decrease the index of sin x by 2 and increase that of cos x by 2 as in (v).
e Increase the index of sin x by 2 and decrease that of cos x by 2 as in (vi).
But we cannot increase or decrease by 2 the indices of both sin x and cos x in the same
formula.
Method for connecting Isin” x cos”x dx with any one of the above six integrals:
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Step 1: Take P =sin** x cost*!
smaller of the cos x in the two int
Step 2: Find dP/dx and expres
are being connected.

Step 3: Integrate both sides with respect to x,

Example 02: Connect Isin" x cos?

jsiu‘x cos’x dx -

APPLIED CALC ULUS

X, where A is smaller of the two indices of sin x and M is
egrals which are to be connected.

$ it as a linear function of the two integrands whose integrals

transpose and solve for the given integral.
x dx with Isin"'z x cos?x dx- Hence evaluate

Solution: Let P =sinP2* x 051" x =sin""' x cos"' x
Differentiating both sides with respect to x, we get

dP/dx =(p—-1)sinP2 X (cos x)cos™™ x +sin?™! x(q+1)cos? x (~sinx)

X cos? X—(p—1)sin” x cos® x —(q+1) sin® x cos? x

P=1)sin®x cos? x = (p=1+q+1) sin® x cos? x
=(p=1)sin® x cos® x - (p+q) sin® x cos" x
Integrating both sides with respect to x, we get
P:(_p—l)jsin"'2 x cos? x dx -(p+q)jsinp x cos? x dx
(p+q)Isin" x cos? x dx = —li’+(p—l)_|'.3'in"“2 x cos? x dx
sin™ x cos¥*! x d (p—1)
(p+a) (p+q)
which is the required reduction formula. If the power of cos x is reduced, we get
sin”'x cos?'x  (q-1)
(p+a) (p+q)

For example, to evaluate J‘sin" xcos” X dx, putp=4andq=2in(l), we get

J.sinp X cos?x dx = —

Isin""2 x cos? x dx N

. =2
Isin" X cost x dx =- jsan" x cos" x dx (2)

sin” x cos® x
6
Again putting p =2 and q = 2 in (3), we have

| 5 3¢.
Isin"xcos' xdx =— +gjsm2xcoszxdx 3)

5 3 : 3
. 2 2 __sinx cos” x l (0 5 __Sinxcos’x l 5
Ism Xcos“ x dx = -———4 +4Isn xcos” xdx 7y +4Icos xdx
i 3 +cos 2x sinxcos®x 1
-_-_m.,.lf 1+-cos2x dx=_———_+~J(l+cos2x)dx
4 4 2 : 4 8
sinxcos®x 1 sin 2x]
e —| X+
4 8 2

in’ 3 : 3 ;
3 SiIn“xcos"x 1| sinxcos’x | sin 2x
Thus (1) becomes: Isnn4xc052xdx=— +_[_. X 4 5in

6 2 4 8 2

sin® x cos” x sinxcos’x 1 sin2x
=- - +—| x+ :

- 6 8 16 2
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REMARK: We know that sin 0 = sin & = sin 2 1 = cos W2 = 0. Thus, if the limits of
integration are taken from 0 to /2 or 0 to x or 0 to 2 x, the first term on right side becomes

zero. In this case, we have:

/2 (p—l) w2

I sin? x cos? x dx = I sin” % x cos? x dx
0 (p+a) g

n __l T ,

Isin" x cos? x dx = (p jsin"" x cos? x dx

0 (p+q)0

2n ‘”I 2n ,

Jsin" x cos? x dx :—(E——) I sin? ™ x cosY x dx

1 (p+a) g

I the power of cos x is reduced, we get

/2 2 )

I sin? x cos? x dx = (a ) I sin? x cos?" x dx
0 (p+q) 0

=N*
(9 ) Isin" x cos¥2 x dx

(p+a)y

'-l 2n "

(a=1) J-sin" x cost T x dx

(p+a)
n ) X _ 2R

Example 03: Evaluate (i) J‘sinﬁ x cos’ x dx (ii) J'sin" x cos” x dx (iii) Isins x cos’ x dx
1] 1} 0

sin” x cos? x dx =

—

sin? x cos" x dx =

:l—,';;‘ =]

]

Solution: (i) Using reduction formula on sinx and cos X alternatively, we gel

T s 6-Laf Qo) % 5 S5-I . .4
Ism X COS xdxz——-JJ-sm x cos X dx =—.—— | sin” X cos X dx
11 5+4
0 0 0
20 4-128, 50 =17 . 5 40 2-1%¢ .
=—.— sm‘xcos“xdx=-—.———— sin“xcosx dx =——.—— smnx cos x dx
99 4+3 - 231 3+2 4 1155 2+1 .

4 2 40 . : . ;

=—0,—[sinx]fn= [sin 27 —sin 0]=0 (NOTE: sin 2 =sin 0 =0}
3465 O 3465 -

(i) Using reduction formula on sinx and cos x alternatively, we get

n 2n n
- ) 5 4-1 "7 .
Isin" x cos’ x dx = Ism4 % cosd x dx ==, —— |sinx cos’ x dx
10 444
0 0 0
5 4=1F ) Y 2t T , 3
= — Isin“ Xcos " xdx=——— Ism"x cos” x dx :——J' cos” x dx
2 8 4+20 32 2+2 3 I280
2_|2n 3 n 3 .;
=-3—.-——— cos” x dx = — ldx=—+[x]Z“=-‘j—t—
128 2 7 256 - 256" 128
(iii) Using reduction formula on sinx and cos x alternatively, we getl
n -] n 4 5-1 2n
j-:;inS x cos’ x dx = —— sin’ x cos® x dx =— . —— sin’ x cos’ x dx
. 5+5 5 10 5+3
( 0
4 <1 In _ I 2 3_|2n ‘
:g_,—,—?’—J sin x cos® X dx=—.v.——jsmx cos x dx
58 3+2 55 3+1 5

(

=
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2 2 sinzx 1 .2 . 2
:ES_Z 5 ~~—[sm 21 ~sin 0]:0 [NOTE: sin 27 =sin 0 = 0]

, 0

9.5 APPLICATIONS OF DEFINITE INTEGRATION

In this section we present a variety of applications of definite inte
“Volume of Solid of Revoly

gration. These include
tion”, “Area between Two Curves”,
function”

“Average value of a
Application-I Volume of Solid of Revolution

Definite integrals are used to find the volume of a solid of revolution. The

N or a curve about a line such as the x —
gion shown in figure 1. Imagine that it is revolvi
= axis, it sweeps out a three — dimension

solid is produced
axis. For illustration,
ng about the x — axis.

al figure - a solid of
revolution (figure 2).

ﬂh y Ay

| ] | )

X 0 T x
Fig. 1 Fig. 2

A 4

This particular solid is a cone. A formula for finding the volume of such solids of
revolution is discussed next.

Consider a function y = f(x) that is non-ne

gative and continuous on an interval [a, b].
Divide this interval into n equal

subintervals of width Ax . We then have
o b-a .

n
Draw the rectangles in each sub-interval. The heights of these

f(x,).f(x,). and so on (Figure 3). As the region is spun
rectangle generates

rectangles then are
around the x — axis, each
a cylinder. For example, the first rectangle with width Ax and
height f(x,) generates a cylinder having radius f(x,) and height Ax (Figure 4).

Yy

A

f(x,)

Fig. 3

Fig. 4
_I

~
>

'

AX "X >
A Rectangle generates a cylinder

The volume of a éylinder is Ttr*h, where r is the radius and h is the height. Here r= f(x,)
and h = Ax . Thus the volume of the first cylinder generated is

n{f (x, )}2 Ax: The volume of the second cylinder is n{f (x, )} Ax
The total volume generated by revolving all rectangles is

n{f (x,)}’ Ax +7r{f(x2)}2Ax+---+R{f(xn)}2 Ax

The rectangles generate cylinders
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In summation notation, we have

V=Z:I:1t{f(xi)}2 AX

the volume of the solid of revolution. The larger n becomes,

This volume is approximately
he approximation. The exact volume of the solid is

the smaller Ax becomes, and better ist
the limit of this sum as n — e oOras Ax = 0-

The limit on the right is the definite integral shown next.
The volume V of the solid prodiced by revolving the region bounded by y = f(x) and the

x — axis (between x = a and x = b) about the X — axis is
b
VzIn{f(x)}'dx
a

provided that f is continuous on [a, b].
Example 01: Find the volume of the solid of revolution obtained by revolving the curve

y= %% about the x — axis between x =1 and x = 3.

Solution: The volume of solid of revolution is given by:
b

V= jn{f (x )}1 dx

a

Substituting the values, we gel
3 3
‘ a2 I 1 3 ] \
v=[n(x2) dx=nx‘dx =n| =[x ==n[3’ =)=
fni?) gx[s)r.s( )

Thus, the volume of the solid of revolution obtained by revolving the curve y = x> about the x
_ axis between x = 1 and x = 3 is 48.41 cubic units. This w}iume is shown in figure below.

m(242)=48.4n

()|

A

B
I g
Solid of Revolution of the curve y = x'

Example 02: Find the volume of the solid of revolution obtained by revolving the curve
y = 1/x about the x — axis between x = 1 and x=2.

v

Solid of Revolution of the curve y = 1/ X

b
Solution: Since V = jn{f (x)}2 dx . Substituting the values, we get

Hence the volume is 7/ 2 cubic units. This volume is shown in the figure above.
Example 03: Find the volume of the solid of revolution obtained by revolving the curve
y= x*+ 1 about the x - axis on the interval [0, 3].

b
Solution: Here V = In{f(x)}' dx . Substituting the values, we get

3 3

V':Irt(xzﬂ)z dx =1rj.(x"' +2x2+l)dx =n{%x5+§x31'-x:|

0 0

0
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N =1t[-;—(3)5 +§(3)3 +3—0]=r:(48.6+18+3) =69.6m-

Hence the volume is 69.6 t cubic units.

Example 04: Find the volume of Gabriel’s Horn '
Solution: It is the belief of Christians that at the day of Judgment that it is Gabriel who will
below the horn “THE TRUMPET”. But Muslims believe that it is Israfiel who will below
this TRUMPET. A .

APPLIED CALC ULUS

Any how, the function that is to be revolved about
the x-axis is f(x) = 1/x fromx=1t0 x = 0. _ . —
The figure is shown here. 1

Thus

V=tj!n{f(.x ¥ d:In{[l]} R e R

Application-TI Area Between Two Curves

We know that one of the use of definite integration is to find the area under the curve
y = f (x) between the x-axis and the ordinates at say X = a and x = b. The definite integration
is also useful in finding the area between the two curves y = f(x) and y = g(x). This is shown
graphically as under. In case if limits x =a and x = b are not given then both equations

y = f(x) and y = g(x) are solved simultaneously to find two values of x. These will provide
the limits under which required area is to be calculated.

f(x)

B(x)

a b ! a b
Fig. (1) Fig. (2) ’
In figure 1, we se that the curves do not intersect whereas in the second figure the curves

intersect each other at x = a and x = b. In either case, the area between theses curves is
computed by using the formula:

A =i{f(x)—g(x)} dx

Example 05: Determine the area of the region enclosed by y= x* and y = x.

Solution: Since limits are not given hence we first solve two equations simultaneously to get
the limits of integration.

Since y = x” and y = x are tow curves, hence

X =x 2> x*-x=0 2 x(x-1)=0 2 x=0or x = 1. In this domain, if
we plot-both curves, we see that y = x? lies lgelow the line y = x.

Here y = x is the upper curve whereas y = x” is lower curve

(This is shown in the figure). Thus,

y=x y=x
_ ' 1, 151 1.1 ;
_ 2 =|=x?-=x| ==——=== sq.units

Area-j(x x)dx [21 31 "2 3 6 q

0 . 2
Example 06: Determine the area of the region enclosed by y = x* and Y=X
Solution: The required area in fact is the union of areas of two different regions. The first
region starts from x = -1 to x = 0 where y = x is the lower curve and y = x* is the upper curve,
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The second region starts at X = 0 and ending at x = 1where y=x

y= « is the lower curve and y =X is the upper curve.
This is shown in the figure. Thus the required area is:

‘ ‘ L 1T 12 14]
_ 3_ 3 I R 4l gl )
Arca—:[l(x x)dx+£(x x)dx L{x 2x ],. {zx 4x ]ﬂ ¥
1 a 1 s 1,2 1,4 po1r o1 1l
—0—0——(=1) +=(-1) +=\1) =3 I -0+0=——+-+-"7%5
Area004()2()2()4() 422422
Example 07: Determine the area of the region enclosed by y = x and y =x".
Solution: Solving two equations simultaneously, we get:
X’ = x >x-x'=0 =2 ¥ x-1)=0 2> x=0o0rx=1 In this interval, the graph
of the curve y = x_ lies below the curve y = x* , so the required area is: :

. 1
|-
Area:j(xz-—xﬂdx:[-l-x}—lxd] =I‘*-=L sq.units
! 3 4° |, 3 4 12

Example 08: Determine the area of the region enclosed by y = Sx-6andy= X
Solution: Solving the two equations simultaneously, we get.

x>=5x-6 = C-5x+6=0 =P that x = 2 and x = 3. Therefore
the required area is given by:

3 3
Ar.ca=j.[5x—6—x2']dx =[% x? ~6x—%x3‘L

2

v

[}

sq.units

5 | 5 AR
={5(‘9)-—6(3%-3—(27)]—{—2—(4)—6(2)—5(8)]:«;f18*9-10+12+§-:—16— sq units Exa

mple 09: Determine the arca between the curve y = < — 4 and x - axis from x =1 to
x=2.
Solution: The required arca.is given by:

2 )

Arca =z[[0—[xl —4]](1): = _[(4—x2)dx :[4xf—;x3]l =(8f%\]-(4;%j=% $q.units -

rd
Application ITL Average value of Function and Miscellaneous Applications

o b
The average value of a function over the interval [a, b is given by: N If(x) dx
: b—a

Example 10: Blood does not flow with a constant velocity. It flows fastest in the centre
ot.' an artery and slowest next to the wall of the artery. In fact, the velocity v at any
d:itance ;( l'rgm the centre can be expressed as a function of x. Let us assume that for a;l
artery of radius 0.2 cm, th ity is v = 40 - 2 Fi i
e e velocity is v = 40 — 990 x". Find the average velocity of
Solution: The average velocity is given by

B | 02 3 0.2

Vs ——— - : = 7

02-0 (40-990x7) dx = 5[40.\ —-990 ?} =268 cm/s

0
0

Example 11: A ball is dropped from a hi i

. s i gh altitude balloon. If i
v‘elou_ty v = 32 t ft/s, how far the ball travel during the first 4 second 't’he ball falls wifh
Solution: The total distance traveled by ball is given by >

4 4 2 i
3=Iv dl=32]l dl=32[%} =16(42—0:)=256 ft

0 0 0
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as C

onsumed in India was approximately c’(t)=21t+28]
million barrels Per year from 1983 (t = 0) to 1987 (t = 4). Determine the total amount of
¢+ Petroleum consumed from 1983 10 1987

e second
ced by revolving about the x — axis the region whose
=0 is the equation of the x - axis.)
1

»Y=0,x=0, =1'(b) y=— the x - axis,x =¢,x =10-
Jx

(c) y=x2—5x,y=0,x=5.l,x=5.5-
4. Determine the area enclosed betwe
(1) y=x+5, y=+/x from X=0tox=4

(i) y=x?, y=x2
(i) y=1-x2, Y=X+4 from x=-3 to x = (iv) y=e*, y=1land x=
5. Determine the arex gnclosed by the curves, In each case, the region enclosed consists of
LWo regions. A carefyl study of the graphs is essential. »
(i) y=x?, y=-x (ii) y=x* y=x2

now. dumped into a |,
lake by a factory that dumps waste at the ra

te'of 5¢ ™" pounds per year indefinitely?
/2 /2
_ Veot
7. Evaluate: (1) I .
0

dx (i) | LI
L .o S
veot X ++/tan x o Vsinx ++/cosx

What is the total amount of waste

8. Show that:

fi T Xsinx n
(i) _([ln(tanx)dx:() (ii) ;.;1+coszxdx=—4_

| 1
1 ) In(l+x) g
(m)}[ln(;—l)dxzo (w);.; T dx—gan-

9. Discuss the convergence of

(-9 oo

. X .. e_"zx i T dx
) '!.(Hx)}dx () { — '|[(I+x)\/;
w1 o T

10. Evaluate:

o o mjz
(i) J'xaé_‘adx (ii) I‘/Ec_xadx (ini) I sin® X cos®? xdx
1] 0 .

0
n/2 n/2

(iv) f sin” xdx (v) I Jian@ de.

0

LL. Use the definition of Gamma Function, evaluate the following

(i)j\/;c”‘dx
0

T 2 T 2.2
(ii)jx‘c:_Jt dx (iii)je‘h * dx
0 0
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CHAPTER

TEN VECTOR

ANALYSIS

10.1 INTRODUCTION
In this introductory section, we shall be concerned with defining some basic and important
concepts of scalars and veclors. Some definitions and concepts will also be given which play
considerable important role in the vector analysis.
Definition: A scalar is a quantity having magnitude but no direction along with some unit of
measurement.
For example; mass, length, time, temperature, density, distance, area, and volume.

“ Scalars are indicated by letters in ordinary type as in clementary algebra. Operations with
scalars follow the same rules as in elementary algebra.

. Definitien: A vector is a quantity having magnitude and direction as well as some unit of

- -

measurement. R ~
For example, displacement, force, velocity and acceleration are vectors. s im 8
Suppose, we are told that a person moves a distance of 10 m from a Voo
point O on a circular path then he may be any where on the circumference “.‘_ " )
of a circle exactly 10 m apart from the centre (see fig). This mcans that the distance 10 m is
not sufficient to locate the position of the person. Therefore, some additional information
about direction of motion must be supplied along with the distance. Now if we say that the
person has moved 10 m East of O, then his position is precisely located and the displacement

A
’

vector OA is completely determined.

Graphical Representation of a Vector

Graphically, a vector 1s represented by an arrow OP (see fig) defining
the direction and magnitude of the vector being indicated by the

length of the arrow. The tail end O of the arrow is called the origin

or initial point of the vector, and the head P is called the terminal

point. '

Analytically, a vector is represented by a letter with an arrow over it, such as a (see fig) and

its magnitude or length is denoted by la l.

Definition: Two vectors 3 and b are said to be equal if they have the same magnitude and

directio_n regardless of the position of their initial points. In this case we write a = b (see the

above fig). a

Definition: A vector having the direction opposite <

(o that of vector a but having the same magnitude

is dfnf)[cd by -a and is called the ‘negative’ of the vector a (see fig). -a

Dehml_ion: Tl1e vector of zero magnitude is called the null or zero vector. In fact, the null

\fcctor. is an imaginary vector and it may have any direction.

Dcﬁmtion: The vector whose magnitude is one is called the unit vector. If we divide the

g;wcn vector a by its magnitude then we obtain the unit vector a in the direction of vector

a ._For e_xumplc, the unit vector along the vector i is givenby a=13 Nal.

This definition of unit vector suggests that any vector d can be represented by the product of

~ aunit vector a in the direction of @ and the magnitude of symbolically, this is written as:
ke sl
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Nzero vectors a.and b are said to be collinear if there eXists a nonzero
real number k such thata=k b,

a
If k>0 then the vectors a and b have the same direction.
Ifk <0 then the vectors a and b have

opposite directions, 2a
If a vector a s multiplied by a scalar

—
.
-

of a. The direction of -2a

ka remains unchanged if k > 0 and it is reversed if k < 0. Ip the above figure, the
multiplication of the vectora by 2 and -2 js shown,

Three Dimensiona| Coordinates
Throughout these sections, we shall be co
By the introduction of th

all three axes, we obtain the usuy; ' system. The conventional orientation
of axes is shown in the followi :

ectangular Unit Vectors and Their Representation
The vectors i = [1,0,0],j =[0, 1, 0] and k
These are depicted in the figure shown.
Now any non-zero vVector a =[ a; a,, a3] in R? can be k
expressed as:
a=| 4y, as, Ih] = [ a0, 0] + [0 a3, 0] + [ 0 0, 213]

=a[10,0]+a, (0.1,0]+a,[ 00, l}=a, I+ aj+ask i
Example 01: Show that the vectors 3 = (4/3)i-2j +3k
and b = -2i + 3j - (9/2) k are collinear vectors,
Solution: If vector a and b are collinear vectors We must have: a=m b,
> (4/3) i —J+ 3k =m(-2i + 3)-92)k) > 4/3= -2m, -2 =3mand 3 = (-972) m

From three €quations we observe that m=-2/3. Thus a = (-2/3) b. Hence WO vectors are
collinear.

Definition: The vectors lying in the
they are non-coplanar vectors.
Definition: The vectors intersecting at a single point are called the

concurrent vectors and point where the vectors intersect is called the P é’

Point of concurrency, Three concurrent vectors are shown in the adjacent fj

ncerned with vectors in three-dj

=10, 0, 1] are known as rectangular unit vectors.

same plane are called the coplanar vectors otherwise

gure.
IfP\(x1, y1, z1), Pa(xa, Y2, Z2) are points in space, the vector represented by pp,

) IS
PP, = (2=x)i+(2-y1)j+(z2-2)k
Definition: The magnitude or length of the vector a = [ a;_ a,,

[n2., .2, 2
defined to be a number lal = a = a,"+a," +a," .

Definition: The unit vector along a space vector a = xj + yi+zkis given by

a X . y " z K
U=—= 1+ . Jj+
lal VX2 +y?+22 Vxi+yl+2? VX2 +y? 422
Example 02: Find the magnitude of the vector a = 5j — 3j +9Kk. Also find the unit vector
along a. - - '
Solution: The magnitude of the given vector a is

lal = 15i - 3j + 9Kl = /5% +(~3)2 +9? = 2549481 = /T3

a3]=a,i+a2j+a3kis
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a . S 9
Also, the unit vect along a is given by : U =—"% D i ——j+ =Kk
" of . 8 4 lal 115 J115 J115

Example 03: Find the vector whose magnitude is 5 and is in the direction of the vector

4i-3j+k

Solution: Let a =4i- 3j+k, lal= \f 42 +(-3)* + il = J26 . Thus, unit vector in the direction
i = et 3 ek
WS 26 V26 Y26

Ifb is a vector of magnitude 5 and is in the direction of vector a then,

bosee 21550 S
726 J26° 26
Definition: Two vectorsa=a.i+a2j+a3kanda=b,i+b2j +bsk

are said to be parallel if the ratio of their components is same. a b
Thus the condition that two vector as shown above ar¢ parallel if

y_H_ B
b, b, by
This is shown in the above figure.
Example 04: Find the value of A if the vectors 6i + j-k
4 4
. Solution: Since the given vectors are parallel, so e —-;—‘— =2 a=(6)(-4)="24

‘/10.2 PRODUCT OF TWO VECTORS

When two scalars are multiplied, the result is a scalar, but when two vectors are multiplied,
the result may be scalar or veclor. Thus, the product of two vectors is of two kinds. These are

(i) Scalar Product and (ii) Vector Product.

Scalar or Dot Product of Two Vectors
The product of two veclors that produces a scalar quantity is known as scalar product of two

vectors. Since this product is shown by placing a dot (.) between the two vectors hence, it is
also known as a Dot Product. For example, if a force F is applied on a body which is
displaced through the vector d then the product F.d is called work done by the force F.

This is denoted by: w=F.d |
Definition 1: If 2 and b are two non-zero vectors at an angle 6, their scalar product 1s defined

as:

and A I - 4j + 4k are parallel.

a.b=abcos8wherc056§n

Here a and b are the magnitudes of vectors a and b respectively.
Definition 2: Ifa = aji + 2j+ak andb = byi + byj + bsk then dot product between a and
b is also defined as:

a.b= a;b| + azb?_ + a3b3

From the two definitions, we conclude that .
abcosO=ab + aby + a3b3

a,l;)l+azb2 +a3b])=cos_| ab, +a,b, +a;b,

- aI.D J;IZ +a22 +a32 Ez +b22 +b32
Example 01: A partlc!e is: aCt(.!d on by constant forces 4i + j -3k and 3i + j - k which, is
displaced from the point i + 2j + 3K to thre point 5i + 4j + k. Find the total work done by

This implies that: 8= cos™ [

the forces. o
Solution: Let F, =4i+j-3kand F; = 3i +j - k then the total force is

" | F=F, +F,=7i+2j-4k

e p——
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If d is the displacement measured from the point i + 2j + 3Kk to the point 5i + 4j + k then
d;(5l+4j+k)—(i+2j+3k)=4i+2j~2k '
Thys, the required work done by the given forces is
W=F.d=(7i+2j—4k) (4i+2j-2k)=28+4+8=40].
Example 02: Find the angle between the vectors a = I + 2j-kandb=-1+j-2k,
Solution: Let 6 be the angle between the vectors a and b, Then using the formula,

(
0 = cos! ab, +a,b, +a,b,
\\/a,z +a,2 +a,2 b + b,” +b,?2

we have B =cos”

( 1= +2(1) +(-1)(-2) — (1J= 60°
VIZ+22 4 (<12 VD212 4 (2) 2

Useful Results .

i.i=(D(1)cos0= I. Similarly, j.j=k.k=1.

Alsoi.j=1.1 cos90°=0 Similarly, j.k=k.i=0.

Theorem: Two non-zero vectars are perpendicular if and only if their dot product is zero.

Proof: Let the vectors a and b be perpendicular, then

. a.b=abcos90°=0 (because cos 90° = 0)

Now,let a.b=0 abcosB =0 P cos6 =06 =90°

This implies that the vectors a and b are perpendicular.

Example 03: For what values of p the vectors a = [2,-1,2) and b = [3, 2p, 0] are

Perpendicular?

Solution: Since the given vectors are perpendicular, therefore: a.b=0. Now,
a.b=[(2,-1,2].(3, 2p, 0]=6-2p+0=0 2 p=3.

~Vector or Cross Product of Two Vectors axb

The product of two vectors that produces a vector quantity is known as

vector product of two vectors. Since this product is shown by placing a b

cross (x) between the two vectors, hence it is also known as a Cross

Product. For example, let F be the applied force and r be the arm. a

We define the Momentum or Torque which is a vector as: ¢ = Fxr

Definition 1: Ifa and b are (two non-zero vectors acting at an angle 8, their cross product is a

vector quantity whose direction is perpendicular to both a and b and jts magnitude is given

by: la x bl=absing

Thus axb=absinOn

Here n is a normal vector to a and b.

Definition 2: The vector product between two non-zero vectors a and b is also defined as:

I j k
axb=a, a, a,
' b, b, b,

Theorem: Prove that the magnitude of the cross product of two non - zero vectors a and b
represents thearea of parallelogram having a and b as adjacent sides, that is,
Area of parallelogram = [a x b,
Proof: We know that

Area of parallelogram = Length x Altitude = |QA] IBMI.
From the figure, we see that: sin 8 = [BMI/ |OB| :
= IBMI = IOBI sin 6 0O M a A
Therefore, area of parallelogram = I0OAI IOB| sin § = absin® =laxbl

C
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Example 04: Ifa = 5i-3j
Solution: By definition,

i k| [P k
3 4|=i(3-28)-j (-3 -76) +k (35 +57)=-25i+8lj+ 92k

+4kandb=19i+7j-k,lhenﬁndaxb.

Example 05: Find the area of a parallelogram whose adjacent sides are i-2j+3kand

2i+j-4k. '
Solution: Leta=i-2j+3k and b = 2i + j — 4k. We know that area of parallelogram 1S
i j Kk
givcnbylaxbl.Now,axb=1 -2 3 =i(8—3)-j(—4-6)+k(l+4)=5i+10j+5k
2 1 4

3 laxbl= {7+ (10 +(5)? =V150=5/6.
Thus, area of the parallelogram whose adjacent sides are vectors 4 and b is 56 unit’.

REMARK: The area of a triangle = 1/2 (The area of parallelogram) = 1/2laxbl

'Scalar Triple Product or Box Product
Let a, b and ¢ be three vectors. Then their scalar triple product is denoted by a . (b x ¢) and is

a, a, a,
defined as: a.(bxc)=|b, b, byl =I[a b ¢]
/ c, € &
Geometrical Interpretation of Scalar Triple Product ,:f—E::T__::,—Z

A solid figure with six faces that are parallelograms ' L
. N § . | { [
is called parallelepiped. In a rectangular parallelepiped. | ‘
the faces are rectangles. If the faces are squares, the . SEELES e 4_7 b

parallelepiped is a cube. a -
The volume of parallelepiped is given by “Scalar Triple Product”.
That is, V=a.(bxc)

EXAMPLE 06: Find the volume of parallelepiped if a = -3i + 7j + 5k, b=-3i+7j -3k
and ¢ = 7i -5j - 3k are its edges.
Solution: Volume of a parallelepiped

6lx; Y3 Z3

-3 7 3
V=a.bxo=|-3 7 -3 =-3(-21-15)-7(9 +21) +5(15-49) =-272
7 =5 3
Since the volume is always positive, therefore volume of required parallelepiped is 272 unit’
Tetrahedron (Triangular Pyramid) D .
A solid figure bounded by four triangular faces is called retrahedron. .
Volume of Tetrahedron '
If A(x1, 1, 21), B(x2, Y2, Z2), C(X3, y3, 23) and D(x4, s, Z4) B
are the vertices of a tetrahedron then its volume can be found in A
the following way: ¢
X, vy, z |
vy = 1xy ¥y 2 |
1
I

X4 yci Z4
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It may also be noted that if six tetrahedrons of same sizes are combined together they form a

parallelepiped. Thus, V1'= 1/6 (Volume of Parallelepiped)
Now in the above figure, if we let a = AB, b = AC and ¢ = AD then
Vr=1/6[a.(bxc)

Example 07: Show that the volume of the tetrahedron whose vertices are (0, 1, 2),
3,0,1), (4, 3,6) and (2, 3, 2) is 6.

X oz 1
1
Solution: Method-1. Using the formula, V= 11X ¥y, 2z
6[x3.y; zy 1
1

Xg Ya Z4
2 1
1 Cil ol e 31 Bol Bo1
v rejh § 4 -4 ol o Ll S L
2321
22[—{3(6—2)—(4—2]+(8—12)}+2{3—(3—3)+(12—6)}—{3(6—18)+(12—6)}]=é(36)=6unit3

L)

Method-1I: a=AB=(3-0,0-1,1-2] =3, -1, -1],
[

b=AC=[4-0,3-1,6-2]=[4,2.4],
c=AD=[2-0,3-1,2-2]=[2,2,0].
3 =1 =1
Nowa.(bxc)=[4 2 4|=3(0-8)+1(0-8)~1(8-4)=-24—-8—4=_36
2 2 o]

Thus volume of Tetrahedron is V; = (1/6) [a . (b x )] = (1/6) (36) = 6 unit’.

This result is same as above. Here negative sign is neglected because volume is always
positive.

REMARK: We know that if two rows of a determinant are interchanged the value of

determinant is changed by negative sign. If this interchange is done twice the value of
determinant remains same.

Now, ' b, b, by=lc, ¢, c5|=|a, a, a,
¢, € ¢ |a a, as |b, b, b,
Thus, a.(bxc)=b.(cxa)=c.(axb) OR [abc]=[bc al=[c ab]

Vector Triple Product ‘

If a, b and c are three nonzero vectors, then their vector triple product is usually denoted by

a x (b x ¢) or (a x b) x ¢ and are defined as follows;

ax(xc)=(a.c)b-(a.b)c AND (axb)xc=(c.a)b-(c.b)a

It is clear from the above definitions that: a x (bx¢) #(axb) x ¢

Example 08: If a =i + j + 3K, b = -i + 7j -2k and ¢ = 2i - j + k then verify the formula,
ax(bxc)=(@.c)b-(a.b)c

Solution: Consider,

i j k .
(bxe)=|-1 7 -2/=i(7-2)-j(-1+4)+k(1-14)=5i-3j-13k
2 =1 1
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i J Kk '
Thus,ax(bxe)=|l | 3 =i(—13+9)—j(-—l3—IS)+k(—3-5)=—4i+28j—8k (1
5 -3 -13

Taking right hand side, we get
@.¢b-(a.b)c={(1)(2)+(1)(-)+EOH- +7j=26) {0 (=) + (N () +3) (-2} (21 - 1+ k)

=(4)(—i+7j—2k)—(0)(2i—j+k)=—4i+28j-8k (2)
From (1) and (2), we see that : a X (bxc)=(a.c)b-(a. b) ¢
Scalar Product of Four Vectors
If a, b, ¢ and d are any four nonzero Vectors, then the scalar product of a x b with ¢ x d
denoted by (a x b) . (¢ x d) is known as scalar product of four vectors. To evaluate this
product, we first compute (a x b) and then (c x d). Finally, we compute their dot product to
get the required scalar product of four vectors.
Vector Product of Four Vectors
If a, b, ¢ and d are any four nonzero veclors, then the scalar product of a x b with ¢ x d
denoted by (a x b).x (¢ x d) is known as scalar product of four vectors. To evaluate this
product, we first compute (a x b) and then (¢ x d). Finally, we compute their cross product to
get the required vector product of four vectors.
" 10.3 VECTOR FUNCTIONS
If to each value of a scalar variable t in some range there corresponds a unique vector f in
space, then f is said to be a vector function of L. This is denoted by f(t). If a Cartesian system
of coordinates is chosen, then we can write: _fO=fi(0i+ 6O j+LOK
where f,(t), f2(t) and fiy(t) are three scalar functions and are the components of f(t) along
X — axis, y — axis and Z — axis, respectively. f(t) =cos ti+ t* j +sin tk and g(t) =5ti+ tj+
e' k are examples of vector functions.
Differentiation of Vector Function
Let f(t) be a continuous vector function of a scalar variable t. Then if the limit

lim [f(t +At) - f(1)]/ At

At—=0
exists, it is called the derivative of f with respect to t and is denoted by df/dt or
£7(t). If df/dt exists at t = to, f is said to be differentiable at t= to.
The function df/dt is itself a vector function of t and its derivative, if it exists, is called the
second derivative of f(t) and is denoted by d*t/dt® or £7(1) and is defined as:

d2f/di = lim [f(t+AD) - (O )V At

At—0
Similarly, we define higher derivatives namely, £7(1), £, ..., £"(V.

f(H) = [ i+ Kt j+ ROk is derivable then f is differentiable if and only if the scalar
functions fi(t), fa(t) and f3(t) are differentiable and in this case,

f'(1) = f(Vi+ O+ fi(Ok
Vector Rules of Differentiation -
Let f and g are vector functions of t, then

(1) %[c f (1)) =cf (1), c being scalar (ii)—:—(fi g)=f£'(1) = g'(t)
t

(iii) -{%(r. g) =1V. g + (1) .g0) (V) %,(fxg); f(t) x g'(t) + f(V) xg

REMARK: In (iv) the order of the functions f, g and their derivatives is not to be changed
because cross product is not commutative.
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(i) The position vector is usually denoted by r and is defined as: r = Xi + yj + zk where x, y
and 2 are functions of variable t.

Example 01: A particle moves along the curve x
time. Find the magnitude of velocity and accele
tin seconds and x, Y and z are in meters.

Solution: The position vector r = xi + yj + zk = (€ +1)i+0+ 2+ 5)kS. Differentiating
with respect to r, we get

=t3+l,y=t2,z=2t+5wheretisthe
ration of the particle at time t = | where

Velocity — =v=dr/dt=301+2tj+2k
Att=1, we have v=3i+2j+2k

Acceleration =a=dv/dt=6tij +2j + Ok
Att=1, a = 6i +3j

Thus, IVl = /32 +22 422 = /17 my/s and  lal = 62 +22 402 =20 my/s?

Integration of Vector Functions
Let f(t) = fi(0) i + fa(t) j + f5(t) k. Suppose fi(t), fx(t), and fy(t) are continuous in a specified

interval. Then the equation _[f(t)dt = If,(t)dti + Ifz(t)dtj +_[f3(t)dtk defines an
indefinite integral of f(t). If there exists a vector function g(t) such that

d
() = —-F(1) then [F(t)dt =F@ +c

where ¢ is an arbitrary constant vector independent of t. _

The definite integral of a vector function f(t) between the limitst=a andt = b can be written
i b

as: [£(t)dt = F(oy - Fa)

Example 02: Determine the vector function whi
derivative and 2i - 3j + k as its value at t = 0.

Solution: Let f*(t) = 2cos 2t i + 2sin 2t j + 4k . Integrating,

[F@at = f(2cos 2ti +2sin 2 j +4t k) + ¢ .
> f()=sin2ti-cos2tj+4tk + ¢ (1)
Putting t = 0 and f(t) = 2i - 3j + k, we get: 2i - 3j+k=03) - (j +(0O)k + ¢
> c=2i-2j+k )
Substituting in (1), we get:  f(t) = sih 2t i — cos 2t j + 4t k + 2i — 2j+k
e f(t)=(2+sin2)i-(2+cos20)j+ (1 +4) k
This is the required vector function. o .
Example 03: A particle moves such that its acceleration is given by: .
M ="+2t)i+¢j-tk Find the velocity and displacement vector given that
f®W=i+j+kandf(t)=i+2j+katt=0. . .
Solution: We know that acceleration is a rate of change of velocity, that is;

a é—i-(v)=f“(l)=(t"+2t)i+tlj-tk
at

ch has 2cos 2t i + 2sin 2t j + 4k as its

]

Integrating, we get J'f"(l)dt = _j.[(t4+ 2t) i +?j—tk] dt+ ¢
5 3 2
‘W= 4 |iv Tj- Lk (1)
> v=f(t)-[—5~+l]l+3_] 5

To find ¢, put t = 0 in (1), we obtain: f(0) =0i+0j+0k+c=i+j+k
=» ¢ = i+ j + k. Thus equation (1) becomes
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v=f(t) = i+t2+1 i+ ll-+1 j tz+1 k 2
5 37 2 2

This is the required velocity vector. Now, we know that

“

s 3 2
. t ; t . ’
v=f (1) =dr/dt = (?+t2 +1J| + [§+l} - (%H] k, where r is a position vector.
Integrating weget-r=j i+t2+1 dt i+j C o a J’ L] PR
‘ 5 R P

[6 IJ [4 [3
= | —+—+t]i+|—=+t|j-|=+t|k+d
0 3 ] [12 )J (6 ] ' 2

Here d is a constant of integration. -
To find d put t = 0 in (3), we get: r=f0)=0i+0j+0k +d=i+2j+k
= d =i + 2j + k. Thus equation (3) becomes

[6 t3 t-fl [3
r= | —+—+t¥lfi+| —+t+2(j-| =+t+l| k
30 3 12 6

This is the required displacement vector.
10. 4 DEL - THE DIFFERENTIAL OPERATOR
‘Letr=xi+Yj+zk be the position vector of a point P(x, y, z) in a given region of the space
R®. A function f which, associates a unique vector f(r) with each vector r in the given region
of space is called vector point function. We can write f(r) as f(x. y, 2).
A function ¢ which associates a unique scalar ¢ (r) with each vector b in a given region of
space is called scalar point function. We may write ¢ (r) as ¢ (X, y, x).
Domain of a vector point function is called vector field and domain of a scalar point function
is called a scalar field.
Definition: The vector differential operator V, is called del or nebula, and is defined as

V= —é}—i + K] j+ 9. k-
ox dy oz

This differential operator has an important role in three dimensional physical problems.
The Gradient
Let [ (x, y, X) be a scalar point function with domain D. Suppose 3¢/ dx, d¢/dy and d$/dz
are continuous in D. Then the gradient of [ is written as V¢ or grad ¢ and is defined as

. . db. db .

V¢=[|;—X+Ja%+kgaz-)(¢):>V¢=5i—)l+-a%J+%k-

The Directional Derivative
The directional derivative of a scalar function ¢ (X, y, X) in the direction of vector a is

defined as: % =(V¢).a/lal

Geometrical Interpretation of Gradient
Consider a surface §(x, y, X) =c¢. Let P(x, y, z) be

any point on this surface. Join OP and let OP =.
Since, r=xi+yj+zkddr=dxi+dyj+dzk /0
Also. the differential of ¢(x, y, x) =¢ is given by:
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dd do a9 d0. 99 do : ;
do=—"dx+Ldy+2dz=0 —l+—j+= =
) ™ x+ay y+az z :(axwayﬁazk (dx1+dyJ+dzk) 0
- Now V4 is the gradient of a scalar field function 0 (x,y,

O, y, x) = ¢ and the dot product of V¢ and dr is
perpendicular to each other. Now, dr

U is perpendicular to the surface ¢ (

APPLIED CALC ULUS

x) which is tangential to the surface
zero, this implies that V¢ and dr are

lies on the surface O (x,y, x) = c, this shows that grad

X, ¥, X)=c.

> Vq):i-éa;(xsyz _zzyxz _9)+jgay_(-x1yz —z2yx? —9)+k%(x3y2—z2y{cz __9)
-:(3)(2312 -2xyzz)i+(2x3y—xzzz)j+(—-2x2yz)k

At(1,2,1), Vé=8i+3j-4k

Also, |V I= 82 +32 + (_4)? = /g9

Example 02: Find the direction
vector 2i + j + 2k.

Solution: Let ¢(x,y,z)=4x2y222,P=(l.2,l)

al derivative of 4x* y2 Z’ at (1, 2, 1) in the direction of

and a = 2i + j + 2k.
o d
derivative is given by: L

gs—:(Vq)].allai

Now, the directional

(N

" Now,

9 A4 % a 29 9 . a 2.2.2 a 22
V¢=[i;—x+ja—ay-+ k%](flx“y‘zz)=1—a;(4x'y“z“)+15;(4x yz )+ ka—z-(4x y zz)

> Vo =8xy’z%i +8x2yz? j+8x%y%z k

At (1,2, 1), Vo=32i+16j+32k

And . - . -
a_ 2i+j+2k =21+J+2k=2’+‘;+2k=%(2i+j+2k)-
lal J(2)2+(l)2+(2)2 Vo

Hence, from (1), we have
do

—:%(2i+j+ 2k)-(32i+I6j+32k)=%{(2)(32)+(1)(16)+(2)(32)}=48-
ds

Example 03: Find a unit vector normal to the surface d(x,y,2z) =
(Slt;ll::,t;))l:l' We know that if ¢ (x, y, z) = c is a surface then normal vector to this surface is the

x’y? -2*yx2 -9=0 at

: a . a _2_. J.2 .2 2_9
gradient of (J(x, y, z). Now, V¢=[|5;+Ja_y+kaz](x y —z"yx )

Braa s
% V¢.—.i§;(x3y2—zzyx2-9)+J$(x3y2—Lzyxz—-9)+kaz(x3y2 z%yx 9)
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= (3)(2)/2 ~2xyz’ )i +(2x3y -x'z’ ) )+ (-2x2yz) k
At (1,2, 1), Vo=8i+3j-4k
Also . Vo= 8 +32 +(=4)? =89
Hence a unit vector normal to the give surface is
(V) 121 8i+3j— 4k gi+3j—4k 1 o a
= = - 2 = \/gg_) @(8l+3j—4k)
(V8)0| (8) +(3)*+()

~"The Divergence and Curl of a Vector Function
In the previous section, we have seen that the differential operatorV operates on a scalar

" function to produce a veclor function. In this section we shall see that this operator will
convert a vector function into a scalar as well as vector when.it applies on it.
Definition: Letf(x,y,z)=f1i+f2j+f3k be defined and differentiable at each point (X, ¥, Z)

u=

in a certain region of space. Then divergence of f written V. f or div f is defined by

f, of,
V.f= E-i+ij+ﬂ-k -(f,i+f2j+f1k)=h+-a—~+§r—3-
dx dy oz ] ox dy 0z
Definition: If f(x,y.z)=fi+fj+ f,k is a differentiable vector field then the curl or rotation

of £ is denoted by Curl for V xfor (rot f) and is defined as
Curlf =Vx{t :[—a—idr—a— i+§—k]x(t‘,i+f3j+t‘3k)
A

ox 4y’

' ACE e8] o 9 |2 2
{2 2 Zlojlgy dz|-jlox oz|+k ax ody

Jx dy 0z . @

f, f3 f, f, f,

b S, :
=(aﬁ,af3 i_[if_"__ai)j.;. Q_l;_ai k

L dy 0z ox 0z Jox  ady

Note that in the expansion of the determinant, the operators 9/0x, 9/ dy, 0/ dz must precede
fy, f3, f3.

Solenoid and Irrotational Vector Functions

Definition: If divergence of a vector function f is zero, that is, V. £ =0 then [is called Solenoid
Vector Function.

Example 04: For what value of constant P, the vector function defined as F=
2¢yzi+x'y’ j—Pxyz' Kis solenoid at (1, 2,3).
Solution: We know that if vector function f is solenoid then div [ = 0. Now,

V-F:(%i+—aa;j+%k]-(2x2yzi+x2y1j+xyz"k) =§;(2x2yz)+%(xzy3)+%(xyﬂ)

=4xyz+ 3x’y* —4P xyz“
Since F is solenoid, therefore 4xyz +3x’y” —4P xyz’ =0 At(1,2,3)
4(1)(2)(3)+3(1)’ (2)° -4P(1)(2)(3)’ =0=>36-216P=0=>P=1/6:
Definition: _Lcl f(x, y, z) be a vector field. If Curl fis a zero vector, that is, then f is called Irrotational
vector function.
Ex:mple 05:Iff=(x+2y+az)i+(bx-3y-2)j+ (4x + cy + 27) k is irrotational vector find a,b
and c.
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Solution: Given f = (x+2y+az)i+ (bx — 3y — z)j+ (4x + cy +22) k. By de

_ (9. 9 . 2 ; .
Curlf =V xr = —a—x—|+5;3+§;k x[(x+2y+az)1+(bx—3y—z);+(4x+cy+21)k]

APPLIED CALC ULUS
finition,

1 ] k
R d d
o 3y %

X+2y+az bx-3y-z 4x +cy+2z

=i[8iy(4x +cy+2z)——aa—z—(bx-—3y—z)}—j[ga;(tlx +cy +2z)-—:—z-(x +2y+az)j|

J
k| —(bx=3y—_,)_9
+ [ax( X—3y-z) ay(x+2y+az)

:(c+l)i—(4—a)j+(b—2)k=(c+1)i+(a—4)j+(b-2)k
If fis irrotational, then Vxf=0 =c+l=

0,a-4=0,b-2=9 2a=4,b=2andc=-]
Example 06: Show that divr'r=(n+3)

Solution: We know that r = xj +yj+zk=>» r= xS y+z? Then,

o | -112 oz
———=—-(x2+y2+zz) 2% = —— 2 =3‘-.Simnarly,-ai:Z and — ==
ox 2 /x‘+y2+zz r dy r 0z r

Now, r" r = (xi + yj + ZK) "= xr" i+ oy § 4 2k Hence,

- n n a : a : a n: n: n a n a n a n
dw(r r) =V.(r r)=[—a?1+5;_}+§z—k]-(xr r+yrtj+zr k):[é-;xr +5y—yr +$zr ] 1))
Now %(xr" ) =r" éqx—x +X a—ax-r" =r".1+xnr"! gi_: "+ xnr“".%*—-r“ +nx?r"?

. a n\_ .n 2 n-2 a n\__ _n 2_n-2
Similarly, é;(yr )—r +ny°r and ~a—z-(zr )—r +nz°r

Thus equation (1) becomes,

div(r"r) =r"+ nxd "2 4 " ny’ 1"? + 1 4+ nz? (™2
=3+ . P=(C3+n) ",

Two Important Theorems '

Prove that: 1. div(curlf)= 0 2. curl (grad )= 0

Proof: (1) By definition,

=3r" + nri(x? 4+ y2 +7°)
-

3 31l F i kP aryy a
div(curlf):V-(fo)=|:—a+i+ﬁ—j+—kj|.alax /9y /DI 3/dy 313=0
W & fioh Bl g

The result is zero as we see that to rows of the determinant are identical.
(2) By definition,

. i j k
curl (gradg)=Vx(Vo) =| 9/ dx d/dy dloz
dd/dx /oy I/oz

= (907 ayaz - 2%/ dudy )i~ (%0 1 dxdz - %/ a20x )i+ (3% / dyax =370/ 3xdy )k = (0)i~(0)+ (O)k =0
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.V - Operator
9. 9. 9
We know that “Nabla Operator” is a vector operator and is-defined as: V= itay ke

2 3 9.9 )02. 9.0 ] 2 2?2 &
Vo ov =l Ll n i || Lind ok |=| 53t
We define [a ! P 3 k}(a H'a J P ax2 2 2

Example 07: Evaluate V2(r), where r= NSRS y? +2? is the absolute value of position vector r =
xi + yj + zk. ' :

Solution: By definition Vi) =

d X
— X=X J=k— .3
S a[i’i)z—a—(i];axx o AT s 3 NOTE: 2-r=%
r . T

ox> T ox\ax) ox r? > r ox
r  rr-y’ r r2-7?
Similarly, — = and —=—5 - Thus,
Y r’ oz r’
5 B 3r2¥(x2+y2+zz) - 2 Z

V (r)’_‘ 3 = 3 = 3 7%\ 2 2 2

r r r Py +z
WORKSHEET 10

I Find the vector whose magnitude is that of the-vector Si—3j+ 9k 5i—3j+9k and is in the
direction of the vector 4i — 3j + k.
2 Find the value of ¢ if the veclors 5i<3j+9kand4i - j+k have same direction.
3. For what value of p the vectors a = [2,4,-7}and b =2, 6. p] are perpendicular?
4. Find the area of the parallelogram determined by 3i +4j and i+j+k-
5. Find the volume of pamllelepiped ifa=[3,4,0],b=1(2,3, 4] and ¢ = (0, 0, 5] are its edges.
6. Find the volume of the tetrahedron whose vertices are the points A2, -1,-3). B4, 1, 3), C(3,2,+1)
and D(1, 4, 2).
7 The coordinates of a moving particle are given by x = 4t - /2,y =3+ 6t— ¢ and z = 3t’. Find the
/velocily and acceleration of the particle when t = 2 sec.
8. A particle moves so that its displacement at time ¢ is given by: x(1) = 2cos ti + 2sin tj+tk
/Fiﬁ'd the magnitude of the velocity and acceleration of the particle at t=0.
9. An acceleration of a particle is givenby: f7°(1) = i+ lzj -(-2k
Find the velocity and displacement vector given that £7(0) =i+ j + kand f(0) =2i+3j-k
A) Define gradient, divergence and curl. If [ = 3x1yzz, find [V¢| at (2, 1, 2).

11. Find a unit vector normal to the surface Xyl —Zyx’=8 at(1,2, 1)
)l;!./Eind a normal-vector of magnitude 5 to the surface Xyt + xy’z=10at (1,2, 1).

. 3. Find the directional derivative of f = 4)523/2:‘:2 at (1,2,1) in the direction of 2i + j + 2k.

14. Find the directional derivative of f = x’y* + y°z* at (1,1,2) in the direction of i +j + k.

v1S. _'Find the value of the constant “C” so that the vector function f = xzy“"z i+ (x+ Cyz)j _
Xye k is Solenoid at (1, 2, 1).

_A6. For what value of constant “C”, the vector function f5(3x +y) i+ (Cy +2) j +2zk is Solenoid.

17. Show that div r =3 and div(n‘rj) = 0 where r is a position vector.
18. Show that the curl of the position vector is zero, that is; Curl r = 0.
19. Prove that V" = n " r, where r is a position vector.
20. Show that Curl " r =0.

21. Evaluate: (a) v (b)) ViInr-
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